A non-conforming finite element method based on non-overlapping domain decomposition is extended to linear hyperbolic problems. The method is based on streamline-diffusion/discontinuous Galerkin methods and the mortar element method. A weak flux continuity condition at the inflow interface is enforced by means of Lagrange multipliers. This weak flux continuity condition replaces the usual mortar condition for elliptic problems, and allows non-matching grids at the subdomain interfaces.
Une méthode d'éléments finis non conforme basée sur une décomposition de domaine est étendue aux problèmes hyperboliques linéaires. Cette méthode combine les techniques de « streamline diffusion », d'éléments finis discontinus et la méthode de joint. La continuité du flux est imposée faiblement sur la portion entrante de l'interface entre les sous-domaines. Cette condition faible de conservation des flux remplace la condition de joint usuelle pour les problèmes elliptiques, et permet l'usage de maillages non conformes sur les interfaces entre les sous-domaines.
Accepted:
Published online:
Yves Bourgault 1; Abderrazzak El Boukili 1
@article{CRMATH_2004__338_3_249_0, author = {Yves Bourgault and Abderrazzak El Boukili}, title = {A mortar element method for hyperbolic problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {249--254}, publisher = {Elsevier}, volume = {338}, number = {3}, year = {2004}, doi = {10.1016/j.crma.2003.11.027}, language = {en}, }
Yves Bourgault; Abderrazzak El Boukili. A mortar element method for hyperbolic problems. Comptes Rendus. Mathématique, Volume 338 (2004) no. 3, pp. 249-254. doi : 10.1016/j.crma.2003.11.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.027/
[1] Nonmatching grids for fluids, Contemp. Math., Volume 218 (1998), pp. 3-22
[2] Iterative substructuring preconditioners for mortar element methods in two dimensions, Soc. Industr. Appl. Math. J. Numer. Anal., Volume 36 (1999), pp. 551-580
[3] The mortar finite element metho with Lagrange multiplier, Numer. Math., Volume 84 (1999) no. 2, pp. 173-197
[4] A new nonconforming approach to domain decomposition: the mortar element method (H. Brezis; J. Lions, eds.), Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. XI, Longman, 1994, pp. 13-51
[5] Domain Decomposition Methods in Sciences and Engineering, Domain Decomposition Press, Bergen, 1998 (pp. 1–11)
[6] Domain Decomposition Methods for Partial Differential Equations, Springer Ser. Comput. Math., Clarendon Press, Oxford, 1999
[7] Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., Springer-Verlag, 1991
Cited by Sources:
☆ This work was supported by a NSERC Research Grant.
Comments - Policy