Comptes Rendus
Numerical Analysis/Optimal Control
Convergence of a multigrid method for the controllability of a 1-d wave equation
[Convergence d'une méthode multigrille pour la contrôlabilité d'une équation d'ondes 1-d]
Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 413-418.

On considère le problème de l'approximation numérique du contrôle frontière de l'équation des ondes. Il est maintenant bien connu que la plupart des méthodes de différences finies et éléments finis classiques ne donnent pas des approximations convergentes à cause des instabilités dues aux hautes fréquences. Plusieurs remèdes on été proposés dans la littérature pour compenser ce fait : régularisation de Tychonoff, filtrage de Fourier, éléments finis mixtes,… Dans cette Note on démontre la convergence de la méthode de multi-grille proposée par Glowinski (J. Comput. Phys. 103 (2) (1992) 189–221) dans le cas de l'approximation semi-discrète de l'équation des ondes par différences finies.

We consider the problem of computing numerically the boundary control for the wave equation. It is by now well known that, due to high frequency spurious oscillations, numerical instabilities occur and may led to the failure of convergence of some apparently natural numerical algorithms. Several remedies have been proposed in the literature to compensate this fact: Tychonoff regularization, Fourier filtering, mixed finite elements,… In this Note we prove that the two-grid method proposed by Glowinski (J. Comput. Phys. 103 (2) (1992) 189–221) does indeed provide a convergent algorithm. This is done in the context of the finite-difference semi-discrete approximation of the 1-d wave equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2003.11.032

Mihaela Negreanu 1 ; Enrique Zuazua 2

1 Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain
2 Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
@article{CRMATH_2004__338_5_413_0,
     author = {Mihaela Negreanu and Enrique Zuazua},
     title = {Convergence of a multigrid method for the controllability of a 1-d wave equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {413--418},
     publisher = {Elsevier},
     volume = {338},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crma.2003.11.032},
     language = {en},
}
TY  - JOUR
AU  - Mihaela Negreanu
AU  - Enrique Zuazua
TI  - Convergence of a multigrid method for the controllability of a 1-d wave equation
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 413
EP  - 418
VL  - 338
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2003.11.032
LA  - en
ID  - CRMATH_2004__338_5_413_0
ER  - 
%0 Journal Article
%A Mihaela Negreanu
%A Enrique Zuazua
%T Convergence of a multigrid method for the controllability of a 1-d wave equation
%J Comptes Rendus. Mathématique
%D 2004
%P 413-418
%V 338
%N 5
%I Elsevier
%R 10.1016/j.crma.2003.11.032
%G en
%F CRMATH_2004__338_5_413_0
Mihaela Negreanu; Enrique Zuazua. Convergence of a multigrid method for the controllability of a 1-d wave equation. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 413-418. doi : 10.1016/j.crma.2003.11.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.032/

[1] M. Asch; G. Lebeau Geometrical aspects of exact boundary controllability for the wave equation – a numerical study, ESAIM: Control Optim. Calc. Var., Volume 3 (1998), pp. 163-212

[2] R. Glowinski Ensuring well posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., Volume 103 (1992) no. 2, pp. 189-221

[3] J.A. Infante; E. Zuazua Boundary observability for the space discretization of the one-dimensional wave equation, Math. Model. Numer. Anal., Volume 33 (1999) no. 2, pp. 407-438

[4] J.-L. Lions Contrôlabilité exacte, stabilisation et perturbations du systemes distribués. Tome 1. Contrôlabilité exacte, RMA, vol. 8, Masson, 1988

[5] S. Micu Uniform boundary controllability of a semi-discrete 1-D wave equation, Numer. Math., Volume 91 (2002) no. 4, pp. 723-768

[6] E. Zuazua, Propagation, observation, control and numerical approximation of waves, Preprint, 2003

  • Tiphaine Delaunay; Sébastien Imperiale; Philippe Moireau Uniform boundary stabilization of a high-order finite element space discretization of the 1-d wave equation, Numerische Mathematik, Volume 156 (2024) no. 6, p. 2069 | DOI:10.1007/s00211-024-01440-9
  • Soumaya Amara Uniform exponential decay of the energy for a fully discrete wave equation with point‐wise dissipation, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 10000 | DOI:10.1002/mma.9099
  • Da Xu Observability Inequalities for Hermite Bi-cubic Orthogonal Spline Collocation Methods of 2-D Integro-differential Equations in the Square Domains, Applied Mathematics Optimization, Volume 84 (2021) no. 2, p. 1341 | DOI:10.1007/s00245-020-09680-5
  • Jean-Michel Coron; Alain Haraux; G. Buttazzo; E. Casas; L. de Teresa; R. Glowinski; G. Leugering; E. Trélat; X. Zhang Introduction: On Enrique, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. E3 | DOI:10.1051/cocv/2021092
  • Umberto Biccari; Aurora Marica; Enrique Zuazua Propagation of One- and Two-Dimensional Discrete Waves Under Finite Difference Approximation, Foundations of Computational Mathematics, Volume 20 (2020) no. 6, p. 1401 | DOI:10.1007/s10208-020-09445-0
  • Ahmet Ozkan Ozer; Mikhail Khenner; Alper Erturk, Active and Passive Smart Structures and Integrated Systems XIII (2019), p. 61 | DOI:10.1117/12.2514567
  • Kaïs Ammari; Carlos Castro Numerical Approximation of the Best Decay Rate for Some Dissipative Systems, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 2, p. 681 | DOI:10.1137/17m1160057
  • Ahmet Ozkan Ozer; Alper Erturk, Active and Passive Smart Structures and Integrated Systems XII (2018), p. 83 | DOI:10.1117/12.2296878
  • H. El Boujaoui Uniform interior stabilization for the finite difference fully-discretization of the 1-D wave equation, Afrika Matematika, Volume 29 (2018) no. 3-4, p. 557 | DOI:10.1007/s13370-018-0559-3
  • Sylvain Ervedoza; Aurora Marica; Enrique Zuazua Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis, IMA Journal of Numerical Analysis, Volume 36 (2016) no. 2, p. 503 | DOI:10.1093/imanum/drv026
  • D.S. Almeida Júnior; A.J.A. Ramos; M.L. Santos Observability inequality for the finite-difference semi-discretization of the 1–d coupled wave equations, Advances in Computational Mathematics, Volume 41 (2015) no. 1, p. 105 | DOI:10.1007/s10444-014-9351-6
  • Sylvain Ervedoza; Enrique Zuazua Transmutation techniques and observability for time-discrete approximation schemes of conservative systems, Numerische Mathematik, Volume 130 (2015) no. 3, p. 425 | DOI:10.1007/s00211-014-0668-3
  • Aurora Marica; Enrique Zuazua Preliminaries, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 1 | DOI:10.1007/978-1-4614-5811-1_1
  • Aurora Marica; Enrique Zuazua Discontinuous Galerkin Approximations and Main Results, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 15 | DOI:10.1007/978-1-4614-5811-1_2
  • Aurora Marica; Enrique Zuazua Bibliographical Notes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 27 | DOI:10.1007/978-1-4614-5811-1_3
  • Aurora Marica; Enrique Zuazua Fourier Analysis of the Discontinuous Galerkin Methods, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 31 | DOI:10.1007/978-1-4614-5811-1_4
  • Aurora Marica; Enrique Zuazua On the Lack of Uniform Observability for Discontinuous Galerkin Approximations of Waves, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 41 | DOI:10.1007/978-1-4614-5811-1_5
  • Aurora Marica; Enrique Zuazua Filtering Mechanisms, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 51 | DOI:10.1007/978-1-4614-5811-1_6
  • Aurora Marica; Enrique Zuazua Extensions to Other Numerical Approximation Schemes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 83 | DOI:10.1007/978-1-4614-5811-1_7
  • Aurora Marica; Enrique Zuazua Comments and Open Problems, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 93 | DOI:10.1007/978-1-4614-5811-1_8
  • Sylvain Ervedoza; Enrique Zuazua Numerical Approximation of Exact Controls for Waves, Numerical Approximation of Exact Controls for Waves (2013), p. 1 | DOI:10.1007/978-1-4614-5808-1_1
  • Aurora Marica; Enrique Zuazua On the Quadratic Finite Element Approximation of 1D Waves: Propagation, Observation, Control, and Numerical Implementation, The Courant–Friedrichs–Lewy (CFL) Condition (2013), p. 75 | DOI:10.1007/978-0-8176-8394-8_6
  • Sylvain Ervedoza; Enrique Zuazua The Wave Equation: Control and Numerics, Control of Partial Differential Equations, Volume 2048 (2012), p. 245 | DOI:10.1007/978-3-642-27893-8_5
  • Aurora Marica; Enrique Zuazua On the Quadratic Finite Element Approximation of One-Dimensional Waves: Propagation, Observation, and Control, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 5, p. 2744 | DOI:10.1137/110839503
  • K. S. Khalina Boundary controllability problems for the equation of oscillation of an inhomogeneous string on a semiaxis, Ukrainian Mathematical Journal, Volume 64 (2012) no. 4, p. 594 | DOI:10.1007/s11253-012-0666-5
  • Sylvain Ervedoza Resolvent estimates in controllability theory and applications to the discrete wave equation, Journées équations aux dérivées partielles (2011), p. 1 | DOI:10.5802/jedp.55
  • Xu Zhang; Chuang Zheng; Enrique Zuazua Exact Controllability of the Time Discrete Wave Equation: A Multiplier Approach, Applied and Numerical Partial Differential Equations, Volume 15 (2010), p. 229 | DOI:10.1007/978-90-481-3239-3_17
  • Sylvain Ervedoza Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes, ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 2, p. 298 | DOI:10.1051/cocv:2008071
  • Sylvain Ervedoza; Enrique Zuazua Uniformly exponentially stable approximations for a class of damped systems, Journal de Mathématiques Pures et Appliquées, Volume 91 (2009) no. 1, p. 20 | DOI:10.1016/j.matpur.2008.09.002
  • Sylvain Ervedoza Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes, Numerische Mathematik, Volume 113 (2009) no. 3, p. 377 | DOI:10.1007/s00211-009-0235-5
  • Antonio Baeza; Carlos Castro; Francisco Palacios; Enrique Zuazua, 46th AIAA Aerospace Sciences Meeting and Exhibit (2008) | DOI:10.2514/6.2008-172
  • Paola Loreti; Michel Mehrenberger An Ingham type proof for a two-grid observability theorem, ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 604 | DOI:10.1051/cocv:2007062
  • Sylvain Ervedoza; Chuang Zheng; Enrique Zuazua On the observability of time-discrete conservative linear systems, Journal of Functional Analysis, Volume 254 (2008) no. 12, p. 3037 | DOI:10.1016/j.jfa.2008.03.005
  • L. V. Fardigola Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant, SIAM Journal on Control and Optimization, Volume 47 (2008) no. 4, p. 2179 | DOI:10.1137/070684057
  • Mihaela Negreanu Convergence of a Semidiscrete Two-Grid Algorithm for the Controllability of the 1d Wave Equation, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 6, p. 3233 | DOI:10.1137/06064915x
  • F. Bourquin; B. Branchet; M. Collet Computational methods for the fast boundary stabilization of flexible structures. Part 1: The case of beams, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 4-6, p. 988 | DOI:10.1016/j.cma.2006.08.003
  • L. V. Fardigola; K. S. Khalina Controllability problems for the string equation, Ukrainian Mathematical Journal, Volume 59 (2007) no. 7, p. 1040 | DOI:10.1007/s11253-007-0068-2
  • M. Negreanu; A.‐M. Matache; C. Schwab Wavelet Filtering for Exact Controllability of the Wave Equation, SIAM Journal on Scientific Computing, Volume 28 (2006) no. 5, p. 1851 | DOI:10.1137/050622894
  • Arnaud Münch A uniformly controllable and implicit scheme for the 1-D wave equation, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 39 (2005) no. 2, p. 377 | DOI:10.1051/m2an:2005012
  • M. Negreanu; E. Zuazua, Proceedings of the 44th IEEE Conference on Decision and Control (2005), p. 404 | DOI:10.1109/cdc.2005.1582189
  • Enrique Zuazua Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods, SIAM Review, Volume 47 (2005) no. 2, p. 197 | DOI:10.1137/s0036144503432862

Cité par 41 documents. Sources : Crossref

Commentaires - Politique