[Convergence d'une méthode multigrille pour la contrôlabilité d'une équation d'ondes 1-d]
On considère le problème de l'approximation numérique du contrôle frontière de l'équation des ondes. Il est maintenant bien connu que la plupart des méthodes de différences finies et éléments finis classiques ne donnent pas des approximations convergentes à cause des instabilités dues aux hautes fréquences. Plusieurs remèdes on été proposés dans la littérature pour compenser ce fait : régularisation de Tychonoff, filtrage de Fourier, éléments finis mixtes,… Dans cette Note on démontre la convergence de la méthode de multi-grille proposée par Glowinski (J. Comput. Phys. 103 (2) (1992) 189–221) dans le cas de l'approximation semi-discrète de l'équation des ondes par différences finies.
We consider the problem of computing numerically the boundary control for the wave equation. It is by now well known that, due to high frequency spurious oscillations, numerical instabilities occur and may led to the failure of convergence of some apparently natural numerical algorithms. Several remedies have been proposed in the literature to compensate this fact: Tychonoff regularization, Fourier filtering, mixed finite elements,… In this Note we prove that the two-grid method proposed by Glowinski (J. Comput. Phys. 103 (2) (1992) 189–221) does indeed provide a convergent algorithm. This is done in the context of the finite-difference semi-discrete approximation of the 1-d wave equation.
Accepté le :
Publié le :
Mihaela Negreanu 1 ; Enrique Zuazua 2
@article{CRMATH_2004__338_5_413_0, author = {Mihaela Negreanu and Enrique Zuazua}, title = {Convergence of a multigrid method for the controllability of a 1-d wave equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {413--418}, publisher = {Elsevier}, volume = {338}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2003.11.032}, language = {en}, }
TY - JOUR AU - Mihaela Negreanu AU - Enrique Zuazua TI - Convergence of a multigrid method for the controllability of a 1-d wave equation JO - Comptes Rendus. Mathématique PY - 2004 SP - 413 EP - 418 VL - 338 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2003.11.032 LA - en ID - CRMATH_2004__338_5_413_0 ER -
Mihaela Negreanu; Enrique Zuazua. Convergence of a multigrid method for the controllability of a 1-d wave equation. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 413-418. doi : 10.1016/j.crma.2003.11.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.11.032/
[1] Geometrical aspects of exact boundary controllability for the wave equation – a numerical study, ESAIM: Control Optim. Calc. Var., Volume 3 (1998), pp. 163-212
[2] Ensuring well posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., Volume 103 (1992) no. 2, pp. 189-221
[3] Boundary observability for the space discretization of the one-dimensional wave equation, Math. Model. Numer. Anal., Volume 33 (1999) no. 2, pp. 407-438
[4] Contrôlabilité exacte, stabilisation et perturbations du systemes distribués. Tome 1. Contrôlabilité exacte, RMA, vol. 8, Masson, 1988
[5] Uniform boundary controllability of a semi-discrete 1-D wave equation, Numer. Math., Volume 91 (2002) no. 4, pp. 723-768
[6] E. Zuazua, Propagation, observation, control and numerical approximation of waves, Preprint, 2003
- Uniform boundary stabilization of a high-order finite element space discretization of the 1-d wave equation, Numerische Mathematik, Volume 156 (2024) no. 6, p. 2069 | DOI:10.1007/s00211-024-01440-9
- Uniform exponential decay of the energy for a fully discrete wave equation with point‐wise dissipation, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 10000 | DOI:10.1002/mma.9099
- Observability Inequalities for Hermite Bi-cubic Orthogonal Spline Collocation Methods of 2-D Integro-differential Equations in the Square Domains, Applied Mathematics Optimization, Volume 84 (2021) no. 2, p. 1341 | DOI:10.1007/s00245-020-09680-5
- Introduction: On Enrique, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. E3 | DOI:10.1051/cocv/2021092
- Propagation of One- and Two-Dimensional Discrete Waves Under Finite Difference Approximation, Foundations of Computational Mathematics, Volume 20 (2020) no. 6, p. 1401 | DOI:10.1007/s10208-020-09445-0
- , Active and Passive Smart Structures and Integrated Systems XIII (2019), p. 61 | DOI:10.1117/12.2514567
- Numerical Approximation of the Best Decay Rate for Some Dissipative Systems, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 2, p. 681 | DOI:10.1137/17m1160057
- , Active and Passive Smart Structures and Integrated Systems XII (2018), p. 83 | DOI:10.1117/12.2296878
- Uniform interior stabilization for the finite difference fully-discretization of the 1-D wave equation, Afrika Matematika, Volume 29 (2018) no. 3-4, p. 557 | DOI:10.1007/s13370-018-0559-3
- Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis, IMA Journal of Numerical Analysis, Volume 36 (2016) no. 2, p. 503 | DOI:10.1093/imanum/drv026
- Observability inequality for the finite-difference semi-discretization of the 1–d coupled wave equations, Advances in Computational Mathematics, Volume 41 (2015) no. 1, p. 105 | DOI:10.1007/s10444-014-9351-6
- Transmutation techniques and observability for time-discrete approximation schemes of conservative systems, Numerische Mathematik, Volume 130 (2015) no. 3, p. 425 | DOI:10.1007/s00211-014-0668-3
- Preliminaries, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 1 | DOI:10.1007/978-1-4614-5811-1_1
- Discontinuous Galerkin Approximations and Main Results, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 15 | DOI:10.1007/978-1-4614-5811-1_2
- Bibliographical Notes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 27 | DOI:10.1007/978-1-4614-5811-1_3
- Fourier Analysis of the Discontinuous Galerkin Methods, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 31 | DOI:10.1007/978-1-4614-5811-1_4
- On the Lack of Uniform Observability for Discontinuous Galerkin Approximations of Waves, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 41 | DOI:10.1007/978-1-4614-5811-1_5
- Filtering Mechanisms, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 51 | DOI:10.1007/978-1-4614-5811-1_6
- Extensions to Other Numerical Approximation Schemes, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 83 | DOI:10.1007/978-1-4614-5811-1_7
- Comments and Open Problems, Symmetric Discontinuous Galerkin Methods for 1-D Waves (2014), p. 93 | DOI:10.1007/978-1-4614-5811-1_8
- Numerical Approximation of Exact Controls for Waves, Numerical Approximation of Exact Controls for Waves (2013), p. 1 | DOI:10.1007/978-1-4614-5808-1_1
- On the Quadratic Finite Element Approximation of 1D Waves: Propagation, Observation, Control, and Numerical Implementation, The Courant–Friedrichs–Lewy (CFL) Condition (2013), p. 75 | DOI:10.1007/978-0-8176-8394-8_6
- The Wave Equation: Control and Numerics, Control of Partial Differential Equations, Volume 2048 (2012), p. 245 | DOI:10.1007/978-3-642-27893-8_5
- On the Quadratic Finite Element Approximation of One-Dimensional Waves: Propagation, Observation, and Control, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 5, p. 2744 | DOI:10.1137/110839503
- Boundary controllability problems for the equation of oscillation of an inhomogeneous string on a semiaxis, Ukrainian Mathematical Journal, Volume 64 (2012) no. 4, p. 594 | DOI:10.1007/s11253-012-0666-5
- Resolvent estimates in controllability theory and applications to the discrete wave equation, Journées équations aux dérivées partielles (2011), p. 1 | DOI:10.5802/jedp.55
- Exact Controllability of the Time Discrete Wave Equation: A Multiplier Approach, Applied and Numerical Partial Differential Equations, Volume 15 (2010), p. 229 | DOI:10.1007/978-90-481-3239-3_17
- Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes, ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 2, p. 298 | DOI:10.1051/cocv:2008071
- Uniformly exponentially stable approximations for a class of damped systems, Journal de Mathématiques Pures et Appliquées, Volume 91 (2009) no. 1, p. 20 | DOI:10.1016/j.matpur.2008.09.002
- Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes, Numerische Mathematik, Volume 113 (2009) no. 3, p. 377 | DOI:10.1007/s00211-009-0235-5
- , 46th AIAA Aerospace Sciences Meeting and Exhibit (2008) | DOI:10.2514/6.2008-172
- An Ingham type proof for a two-grid observability theorem, ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 3, p. 604 | DOI:10.1051/cocv:2007062
- On the observability of time-discrete conservative linear systems, Journal of Functional Analysis, Volume 254 (2008) no. 12, p. 3037 | DOI:10.1016/j.jfa.2008.03.005
- Controllability Problems for the String Equation on a Half-Axis with a Boundary Control Bounded by a Hard Constant, SIAM Journal on Control and Optimization, Volume 47 (2008) no. 4, p. 2179 | DOI:10.1137/070684057
- Convergence of a Semidiscrete Two-Grid Algorithm for the Controllability of the
Wave Equation, SIAM Journal on Numerical Analysis, Volume 46 (2008) no. 6, p. 3233 | DOI:10.1137/06064915x - Computational methods for the fast boundary stabilization of flexible structures. Part 1: The case of beams, Computer Methods in Applied Mechanics and Engineering, Volume 196 (2007) no. 4-6, p. 988 | DOI:10.1016/j.cma.2006.08.003
- Controllability problems for the string equation, Ukrainian Mathematical Journal, Volume 59 (2007) no. 7, p. 1040 | DOI:10.1007/s11253-007-0068-2
- Wavelet Filtering for Exact Controllability of the Wave Equation, SIAM Journal on Scientific Computing, Volume 28 (2006) no. 5, p. 1851 | DOI:10.1137/050622894
- A uniformly controllable and implicit scheme for the 1-D wave equation, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 39 (2005) no. 2, p. 377 | DOI:10.1051/m2an:2005012
- , Proceedings of the 44th IEEE Conference on Decision and Control (2005), p. 404 | DOI:10.1109/cdc.2005.1582189
- Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods, SIAM Review, Volume 47 (2005) no. 2, p. 197 | DOI:10.1137/s0036144503432862
Cité par 41 documents. Sources : Crossref
Commentaires - Politique