Comptes Rendus
Topology
The extended mapping class group is generated by 3 symmetries
Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 403-406.

We prove that for g⩾1 the extended mapping class group is generated by three orientation reversing involutions.

Nous prouvons que pour chaque g⩾1 le groupe modulaire étendu est éngendré par trois involutions qui inversent l'orientation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2003.12.028

Michał Stukow 1

1 Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
@article{CRMATH_2004__338_5_403_0,
     author = {Micha{\l} Stukow},
     title = {The extended mapping class group is generated by 3 symmetries},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {403--406},
     publisher = {Elsevier},
     volume = {338},
     number = {5},
     year = {2004},
     doi = {10.1016/j.crma.2003.12.028},
     language = {en},
}
TY  - JOUR
AU  - Michał Stukow
TI  - The extended mapping class group is generated by 3 symmetries
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 403
EP  - 406
VL  - 338
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2003.12.028
LA  - en
ID  - CRMATH_2004__338_5_403_0
ER  - 
%0 Journal Article
%A Michał Stukow
%T The extended mapping class group is generated by 3 symmetries
%J Comptes Rendus. Mathématique
%D 2004
%P 403-406
%V 338
%N 5
%I Elsevier
%R 10.1016/j.crma.2003.12.028
%G en
%F CRMATH_2004__338_5_403_0
Michał Stukow. The extended mapping class group is generated by 3 symmetries. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 403-406. doi : 10.1016/j.crma.2003.12.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.028/

[1] J. Birman Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc., Volume 21 (1969), pp. 351-354

[2] J. Birman; H. Hilden On mapping class groups of closed surfaces as covering spaces, Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., vol. 66, Princeton University Press, Princeton, NJ, 1971, pp. 81-115

[3] T. Brendle, B. Farb, Every mapping class group is generated by 3 torsion elements and by 7 involutions, Preprint 2003

[4] G. Gromadzki, M. Stukow, Involving symmetries of Riemann surfaces to a study of the mapping class group, Publ. Mat., in press

[5] S. Humphries Generators for the mapping class group, Topology of Low-Dimensional Manifolds, Lecture Notes in Math., vol. 722, Springer, 1979, pp. 44-47

[6] S. Kerckhoff The Nielsen realization problem, Ann. of Math., Volume 117 (1983), pp. 235-265

[7] M. Korkmaz, Generating the surface mapping class group by two elements, Preprint, 2003

[8] C. Maclachlan Modulus space is simply-connected, Proc. Amer. Math. Soc., Volume 29 (1971), pp. 85-86

[9] W. Magnus; A. Karass; D. Solitar Combinatorial Group Theory, Interscience, New York, 1966

[10] J. McCarthy; A. Papadopoulos Involutions in surface mapping class groups, Enseign. Math., Volume 33 (1987), pp. 275-290

[11] B. Wajnryb Mapping class group of a surface is generated by two elements, Topology, Volume 35 (1996), pp. 377-383

[12] A. Wiman Über die hyperelliptischen Kurven und diejenigen vom Geschlecht p=3, welche eindeutige Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Vetenskaps-Akademiens Handl., Volume 21 (1895), pp. 1-23

Cited by Sources:

Comments - Policy