We prove that for g⩾1 the extended mapping class group is generated by three orientation reversing involutions.
Nous prouvons que pour chaque g⩾1 le groupe modulaire étendu est éngendré par trois involutions qui inversent l'orientation.
Accepted:
Published online:
Michał Stukow 1
@article{CRMATH_2004__338_5_403_0, author = {Micha{\l} Stukow}, title = {The extended mapping class group is generated by 3 symmetries}, journal = {Comptes Rendus. Math\'ematique}, pages = {403--406}, publisher = {Elsevier}, volume = {338}, number = {5}, year = {2004}, doi = {10.1016/j.crma.2003.12.028}, language = {en}, }
Michał Stukow. The extended mapping class group is generated by 3 symmetries. Comptes Rendus. Mathématique, Volume 338 (2004) no. 5, pp. 403-406. doi : 10.1016/j.crma.2003.12.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2003.12.028/
[1] Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc., Volume 21 (1969), pp. 351-354
[2] On mapping class groups of closed surfaces as covering spaces, Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., vol. 66, Princeton University Press, Princeton, NJ, 1971, pp. 81-115
[3] T. Brendle, B. Farb, Every mapping class group is generated by 3 torsion elements and by 7 involutions, Preprint 2003
[4] G. Gromadzki, M. Stukow, Involving symmetries of Riemann surfaces to a study of the mapping class group, Publ. Mat., in press
[5] Generators for the mapping class group, Topology of Low-Dimensional Manifolds, Lecture Notes in Math., vol. 722, Springer, 1979, pp. 44-47
[6] The Nielsen realization problem, Ann. of Math., Volume 117 (1983), pp. 235-265
[7] M. Korkmaz, Generating the surface mapping class group by two elements, Preprint, 2003
[8] Modulus space is simply-connected, Proc. Amer. Math. Soc., Volume 29 (1971), pp. 85-86
[9] Combinatorial Group Theory, Interscience, New York, 1966
[10] Involutions in surface mapping class groups, Enseign. Math., Volume 33 (1987), pp. 275-290
[11] Mapping class group of a surface is generated by two elements, Topology, Volume 35 (1996), pp. 377-383
[12] Über die hyperelliptischen Kurven und diejenigen vom Geschlecht p=3, welche eindeutige Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Vetenskaps-Akademiens Handl., Volume 21 (1895), pp. 1-23
Cited by Sources:
Comments - Policy