[Une equation elliptique avec histoire]
We prove the existence and uniqueness for a semilinear elliptic problem with memory, both in the weak and the classical setting. This problem describes the effective behaviour of a biological tissue under the injection of an electrical current in the radiofrequency range.
On démontre l'existence et l'unicité pour un problème elliptique semilinéaire avec mémoire, dans l'arrangement faible et classique. Ce problème décrit le comportement effective d'un tissu biologique sous l'injection d'un courant électrique dans le domaine des radiofréquences.
Accepté le :
Publié le :
Micol Amar 1 ; Daniele Andreucci 1 ; Paolo Bisegna 2 ; Roberto Gianni 1
@article{CRMATH_2004__338_8_595_0, author = {Micol Amar and Daniele Andreucci and Paolo Bisegna and Roberto Gianni}, title = {An elliptic equation with history}, journal = {Comptes Rendus. Math\'ematique}, pages = {595--598}, publisher = {Elsevier}, volume = {338}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.02.008}, language = {en}, }
Micol Amar; Daniele Andreucci; Paolo Bisegna; Roberto Gianni. An elliptic equation with history. Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 595-598. doi : 10.1016/j.crma.2004.02.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.02.008/
[1] Homogenization limit for electrical conduction in biological tissues in the radio-frequency range, C. R. Mecanique, Volume 331 (2003), pp. 503-508
[2] Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Models Methods Appl. Sci., Volume 9 (2004) no. 14 (in press)
[3] An existence and uniqueness theorem in quasi-static viscoelasticity, Quart. Appl. Math., Volume 47 (1989), pp. 1-9
[4] Avere una memoria tenace crea gravi problemi, Arch. Rational Mech. Anal., Volume 70 (1972), pp. 101-112
[5] Sul principio di memoria evanescente, Rend. Sem. Mat. Univ. Padova, Volume 68 (1982), pp. 245-259
[6] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983
- Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace–Beltrami operator, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 3 | DOI:10.1007/s00526-020-01749-x
- A degenerate pseudo-parabolic equation with memory, Communications in Applied and Industrial Mathematics, Volume 10 (2019) no. 1, p. 71 | DOI:10.2478/caim-2019-0013
- Exponential decay for a nonlinear model for electrical conduction in biological tissues, Nonlinear Analysis, Volume 131 (2016), p. 206 | DOI:10.1016/j.na.2015.07.002
- Exponential asymptotic stability for an elliptic equation with memory arising in electrical conduction in biological tissues, European Journal of Applied Mathematics, Volume 20 (2009) no. 5, p. 431 | DOI:10.1017/s0956792509990052
- Stability and memory effects in a homogenized model governing the electrical conduction in biological tissues, Journal of Mechanics of Materials and Structures, Volume 4 (2009) no. 2, p. 211 | DOI:10.2140/jomms.2009.4.211
- Reaction–diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Analysis: Real World Applications, Volume 10 (2009) no. 2, p. 849 | DOI:10.1016/j.nonrwa.2007.11.008
- Applications of homogenization techniques to the electrical conduction in biological tissues, PAMM, Volume 7 (2007) no. 1, p. 2010013 | DOI:10.1002/pamm.200700041
- Reaction–diffusion systems for the microscopic cellular model of the cardiac electric field, Mathematical Methods in the Applied Sciences, Volume 29 (2006) no. 14, p. 1631 | DOI:10.1002/mma.740
- EVOLUTION AND MEMORY EFFECTS IN THE HOMOGENIZATION LIMIT FOR ELECTRICAL CONDUCTION IN BIOLOGICAL TISSUES, Mathematical Models and Methods in Applied Sciences, Volume 14 (2004) no. 09, p. 1261 | DOI:10.1142/s0218202504003623
Cité par 9 documents. Sources : Crossref
Commentaires - Politique