Comptes Rendus
Statistics/Probability Theory
A new extreme quantile estimator for heavy-tailed distributions
Comptes Rendus. Mathématique, Volume 338 (2004) no. 6, pp. 493-498.

The classical estimation method for extreme quantiles of heavy-tailed distributions was presented by Weissman (J. Amer. Statist. Assoc. 73 (1978) 812–815) and makes use of the Hill estimator (Ann. Statist. 3 (1975) 1163–1174) for the positive extreme value index. This index estimator can be interpreted as an estimator of the slope in the Pareto quantile plot in case one considers regression lines passing through a fixed anchor point. In this Note we propose a new extreme quantile estimator based on an unconstrained least squares estimator of the index, introduced by Kratz and Resnick (Comm. Statist. Stochastic Models 12 (1996) 699–724) and Schultze and Steinebach (Statist. Decisions 14 (1996) 353–372) and we study its asymptotic behavior.

La méthode classique d'estimation de quantiles extrêmes dans le cas de distributions à queues lourdes a été introduite par Weissman (J. Amer. Statist. Assoc. 73 (1978) 812–815) et fait usage de l'estimateur de Hill (Ann. Statist. 3 (1975) 1163–1174) comme estimateur de l'index positif des valeurs extrêmes. Cet estimateur de l'index peut être interprété comme un estimateur de la pente dans le « Pareto quantile plot » dans le cas où on considère une régression linéaire passant par un point fixe. Dans cette Note nous proposons un nouvel estimateur des quantiles extrêmes basé sur un estimateur des moindres carrés classique de l'index, qui a été introduit par Kratz et Resnick (Comm. Statist. Stochastic Models 12 (1996) 699–724) et Schultze et Steinebach (Statist. Decisions 14 (1996) 353–372) et nous étudions son comportement asymptotique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.01.019
Amélie Fils 1; Armelle Guillou 1

1 Université Paris VI, Laboratoire de statistique théorique et appliquée, boı̂te 158, 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2004__338_6_493_0,
     author = {Am\'elie Fils and Armelle Guillou},
     title = {A new extreme quantile estimator for heavy-tailed distributions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {493--498},
     publisher = {Elsevier},
     volume = {338},
     number = {6},
     year = {2004},
     doi = {10.1016/j.crma.2004.01.019},
     language = {en},
}
TY  - JOUR
AU  - Amélie Fils
AU  - Armelle Guillou
TI  - A new extreme quantile estimator for heavy-tailed distributions
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 493
EP  - 498
VL  - 338
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2004.01.019
LA  - en
ID  - CRMATH_2004__338_6_493_0
ER  - 
%0 Journal Article
%A Amélie Fils
%A Armelle Guillou
%T A new extreme quantile estimator for heavy-tailed distributions
%J Comptes Rendus. Mathématique
%D 2004
%P 493-498
%V 338
%N 6
%I Elsevier
%R 10.1016/j.crma.2004.01.019
%G en
%F CRMATH_2004__338_6_493_0
Amélie Fils; Armelle Guillou. A new extreme quantile estimator for heavy-tailed distributions. Comptes Rendus. Mathématique, Volume 338 (2004) no. 6, pp. 493-498. doi : 10.1016/j.crma.2004.01.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.01.019/

[1] S. Csörgő; L. Viharos Estimating the Tail Index, Asymptotic Methods in Probability and Statistics, Elsevier, Amsterdam, 1998

[2] A.L.M. Dekkers; L. de Haan On the estimation of the extreme-value index and large quantile estimation, Ann. Statist., Volume 17 (1989), pp. 1795-1832

[3] L. de Haan; H. Rootzén On the estimation of high quantiles, J. Statist. Plann. Inference, Volume 35 (1993), pp. 1-13

[4] B.M. Hill A simple general approach to inference about the tail of a distribution, Ann. Statist., Volume 3 (1975), pp. 1163-1174

[5] M. Kratz; S. Resnick The qq-estimator and heavy tails, Comm. Statist. Stochastic Models, Volume 12 (1996), pp. 699-724

[6] J. Schultze; J. Steinebach On least squares estimates of an exponential tail coefficient, Statist. Decisions, Volume 14 (1996), pp. 353-372

[7] I. Weissman Estimation of parameters and large quantiles based on the k largest observations, J. Amer. Statist. Assoc., Volume 73 (1978), pp. 812-815

Cited by Sources:

Comments - Policy


Articles of potential interest

Extreme quantiles estimation for actuarial applications

Emmanuel Delafosse; Armelle Guillou

C. R. Math (2004)


Almost sure convergence of a tail index estimator in the presence of censoring

Emmanuel Delafosse; Armelle Guillou

C. R. Math (2002)


Asymptotic normality of the extreme quantile estimator based on the POT method

Jean Diebolt; Armelle Guillou; Pierre Ribereau

C. R. Math (2005)