In this article, we propose to study, in more generality, the probability-weighted moments method used by Hosking and Wallis (1987) in the case of generalized Pareto distributions which depend on two parameters γ and σ. The objective is to extend the domain of validity: γ<1/2 required in order to obtain the asymptotic properties of their estimators. By simulations, we show the efficiency of our technique.
Dans cet article, nous proposons d'étudier, dans un cadre plus général, la méthode des moments pondérés utilisée par Hosking et Wallis (1987) dans le cas de distributions de Pareto généralisées dépendant de deux paramètres γ et σ. L'objectif est d'élargir le domaine d'applications : γ<1/2 indispensable pour obtenir les propriétés asymptotiques de leurs estimateurs. Nous montrons l'efficacité de notre technique par le biais de simulations.
Accepted:
Published online:
Jean Diebolt 1; Armelle Guillou 2; Imen Rached 1
@article{CRMATH_2004__338_8_629_0, author = {Jean Diebolt and Armelle Guillou and Imen Rached}, title = {A new look at probability-weighted moments estimators}, journal = {Comptes Rendus. Math\'ematique}, pages = {629--634}, publisher = {Elsevier}, volume = {338}, number = {8}, year = {2004}, doi = {10.1016/j.crma.2004.02.011}, language = {en}, }
Jean Diebolt; Armelle Guillou; Imen Rached. A new look at probability-weighted moments estimators. Comptes Rendus. Mathématique, Volume 338 (2004) no. 8, pp. 629-634. doi : 10.1016/j.crma.2004.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.02.011/
[1] Likelihood-based inference for extreme value models, Extremes, Volume 2 (1999), pp. 5-23
[2] Approximation to permutation and exchangeable processes, J. Theor. Probab., Volume 5 (1992), pp. 101-126
[3] Limiting forms of the frequency distribution in the largest particle size and smallest member of a sample, Proc. Cambridge Philos. Soc., Volume 24 (1928), pp. 180-190
[4] Probability-weighted moments: definition and relation to parameters of several distributions expressable in inverse form, Water Resources Res., Volume 15 (1979), pp. 1049-1054
[5] Parameter and quantile estimation for the generalized Pareto distribution, Technometrics, Volume 29 (1987), pp. 339-349
[6] Statistical inference using extreme order statistics, Ann. Statist., Volume 3 (1975), pp. 119-131
[7] Empirical Processes with Applications to Statistics, Wiley, New York, 1986
Cited by Sources:
Comments - Policy