In this Note we present methods for the development of fast numerical schemes for the Boltzmann collision integral. These schemes are based on a combination of a Carleman-like representation together with a suitable angular approximation. For the hard spheres model in dimension three, we are able to derive spectral methods that can be evaluated through fast algorithms. Estimates for the errors and spectral accuracy are also given.
Dans cette Note nous présentons des méthodes pour le développement de schémas numériques rapides pour l'intégrale de collision de Boltzmann. Ces schémas sont basés sur la combinaison d'une représentation proche de celle de Carleman et d'une approximation angulaire appropriée. Pour le modèle des sphères dures en dimension trois, nous en déduisons des méthodes spectrales qui peuvent être évaluées par des algorithmes rapides. Nous donnons également des estimations d'erreur et un résultat de précision spectrale.
Accepted:
Published online:
Clément Mouhot 1; Lorenzo Pareschi 2
@article{CRMATH_2004__339_1_71_0, author = {Cl\'ement Mouhot and Lorenzo Pareschi}, title = {Fast methods for the {Boltzmann} collision integral}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--76}, publisher = {Elsevier}, volume = {339}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2004.04.010}, language = {en}, }
Clément Mouhot; Lorenzo Pareschi. Fast methods for the Boltzmann collision integral. Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 71-76. doi : 10.1016/j.crma.2004.04.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.010/
[1] Difference scheme for the Boltzmann equation based on the fast Fourier transform, Eur. J. Mech. B Fluids, Volume 16 (1997) no. 2, pp. 293-306
[2] Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B Fluids, Volume 18 (1999) no. 5, pp. 869-887
[3] Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast Fourier transform, Transport Theory Statist. Phys., Volume 29 (2000) no. 3–5, pp. 289-310
[4] Spectral Methods in Fluid Dynamics, Springer Ser. Comput. Phys., Springer-Verlag, New York, 1988
[5] Sur la théorie de l'équation intégrodifférentielle de Boltzmann, Acta Math., Volume 60 (1932)
[6] The Mathematical Theory of Dilute Gases, Appl. Math. Sci., vol. 106, Springer-Verlag, New York, 1994
[7] High order numerical methods for the space non-homogeneous Boltzmann equation, J. Comput. Phys., Volume 186 (2003) no. 2, pp. 457-480
[8] Numerical solution of the Boltzmann equation on the uniform grid, Computing, Volume 69 (2002) no. 2, pp. 163-186
[9] C. Mouhot, L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, Preprint, 2004, submitted for publication
[10] Computational methods and fast algorithms for Boltzmann equations, Lecture Notes on the Discretization of the Boltzmann Equation, 2003, pp. 527-548 (Chapter 7)
[11] Fast spectral methods for the Fokker–Planck–Landau collision operator, J. Comput. Phys., Volume 165 (2000) no. 1, pp. 216-236
[12] A Fourier spectral method for homogeneous Boltzmann equations, Transport Theory Statist. Phys., Volume 25 (1996) no. 3–5, pp. 369-382
[13] Numerical solution of the Boltzmann equation. I. Spectrally accurate approximation of the collision operator, SIAM J. Numer. Anal., Volume 37 (2000) no. 4, pp. 1217-1245
[14] On the stability of spectral methods for the homogeneous Boltzmann equation, Transport Theory Statist. Phys., Volume 29 (2000) no. 3–5, pp. 431-447
[15] A survey of mathematical topics in kinetic theory (S. Friedlander; D. Serre, eds.), Handbook of Fluid Mechanics, Elsevier, 2002
Cited by Sources:
☆ Support by the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282, is acknowledged.
Comments - Policy