Let Ω be a smooth bounded domain in . Let , be a continuous function on and consider a closed subset of . We study the logistic problem in , on ∂Ω, and on , where a is a real number, denotes either the Dirichlet or the mixed boundary operator, and is a smooth function such that is increasing on . In this Note we establish the existence of extremal singular solutions to the above problem, a uniqueness result, and we describe the blow-up at the boundary.
Soit Ω un domaine borné et régulier de . Soit , une fonction continue dans et un sous-ensemble fermé de . On étudie le problème logistique dans , sur ∂Ω, et sur , où a est un réel, désigne ou bien une condition de Dirichlet ou bien une condition mixte sur ∂Ω, et est une fonction régulière telle que l'application soit croissante sur . Dans cette Note on établit l'existence des solutions singulières extremales, un résultat d'unicité et on décrit également la vitesse d'explosion au bord.
Published online:
Florica-Corina Cîrstea 1; Vicenţiu Rădulescu 2
@article{CRMATH_2004__339_2_119_0, author = {Florica-Corina C{\^\i}rstea and Vicen\c{t}iu R\u{a}dulescu}, title = {Extremal singular solutions for degenerate logistic-type equations in anisotropic media}, journal = {Comptes Rendus. Math\'ematique}, pages = {119--124}, publisher = {Elsevier}, volume = {339}, number = {2}, year = {2004}, doi = {10.1016/j.crma.2004.04.025}, language = {en}, }
TY - JOUR AU - Florica-Corina Cîrstea AU - Vicenţiu Rădulescu TI - Extremal singular solutions for degenerate logistic-type equations in anisotropic media JO - Comptes Rendus. Mathématique PY - 2004 SP - 119 EP - 124 VL - 339 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2004.04.025 LA - en ID - CRMATH_2004__339_2_119_0 ER -
Florica-Corina Cîrstea; Vicenţiu Rădulescu. Extremal singular solutions for degenerate logistic-type equations in anisotropic media. Comptes Rendus. Mathématique, Volume 339 (2004) no. 2, pp. 119-124. doi : 10.1016/j.crma.2004.04.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.025/
[1] Existence and uniqueness of blow-up solutions for a class of logistic equations, Commun. Contemp. Math., Volume 4 (2002), pp. 559-586
[2] Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris, Sér. I, Volume 335 (2002), pp. 447-452
[3] F.-C. Cîrstea, V. Rădulescu, Nonlinear problems with singular boundary conditions arising in population dynamics: a Karamata regular variation theory approach, submitted for publication
[4] Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., Volume 31 (1999), pp. 1-18
[5] Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 14 (1997), pp. 237-274
[6] Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, Berlin, 1987
[7] Regularly Varying Functions, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin, 1976
Cited by Sources:
Comments - Policy