[An improvement of bilinear complexity bounds in some finite fields.]
From the existence of a tower of algebraic function fields, we improve upper bounds on the bilinear complexity of multiplication in all extensions of the finite fields and where p is a prime ⩾5. In particular, we improve asymptotic upper bounds on this complexity for prime finite fields.
À partir de l'existence d'une tour de corps de fonctions algébriques, on améliore les bornes de la complexité bilinéaire de la multiplication dans toutes les extensions des corps finis et où p est un nombre premier ⩾5. En particulier, on améliore les bornes supérieures asymptotiques de cette complexité pour les corps finis premiers en caractéristique .
Accepted:
Published online:
Stéphane Ballet 1; Jean Chaumine 1
@article{CRMATH_2004__339_6_383_0, author = {St\'ephane Ballet and Jean Chaumine}, title = {Am\'elioration des bornes de la complexit\'e bilin\'eaire de la multiplication dans certains corps finis}, journal = {Comptes Rendus. Math\'ematique}, pages = {383--385}, publisher = {Elsevier}, volume = {339}, number = {6}, year = {2004}, doi = {10.1016/j.crma.2004.06.011}, language = {fr}, }
TY - JOUR AU - Stéphane Ballet AU - Jean Chaumine TI - Amélioration des bornes de la complexité bilinéaire de la multiplication dans certains corps finis JO - Comptes Rendus. Mathématique PY - 2004 SP - 383 EP - 385 VL - 339 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2004.06.011 LA - fr ID - CRMATH_2004__339_6_383_0 ER -
Stéphane Ballet; Jean Chaumine. Amélioration des bornes de la complexité bilinéaire de la multiplication dans certains corps finis. Comptes Rendus. Mathématique, Volume 339 (2004) no. 6, pp. 383-385. doi : 10.1016/j.crma.2004.06.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.011/
[1] Curves with many points and multiplication complexity in any extension of , Finite Fields Appl., Volume 5 (1999), pp. 364-377
[2] Low increasing tower of algebraic function fields and bilinear complexity of multiplication in any extension of , Finite Fields Appl., Volume 9 (2003), pp. 472-478
[3] Multiplication algorithm in a finite field and tensor rank of the multiplication, J. Algebra, Volume 272 (2004) no. 1, pp. 173-185
[4] On tame towers over finite fields, J. Reine Angew. Math., Volume 557 (2003), pp. 53-80
[5] Curves with many points and multiplication in finite fields, Coding Theory and Algebraic Geometry, Lectures Notes in Math., vol. 1518, Springer-Verlag, Berlin, 1992, pp. 145-169
[6] Algebraic Function Fields and Codes, Lectures Notes in Math., vol. 314, Springer-Verlag, Berlin, 1993
Cited by Sources:
Comments - Policy