[Extensions modules for triangular algebras.]
We construct a long exact sequence where the extensions modules of a triangular algebra are involved with extension modules of its diagonal algebras. This holds in two cases: either its bimodule is right-projective or it is left-flat. This completes a result of Palmér and Roos about the global dimension of triangular algebras.
Nous construisons une suite exacte longue, exprimant les modules d'extension d'une algèbre triangulaire en fonctions de ceux associés aux algèbres de sa diagonale, dans deux cas : soit son bimodule est un module-à-gauche projectif soit c'est un module-à-droite plat. Ceci complète un résultat de Palmér et Roos sur la dimension globale des algèbres triangulaires.
Accepted:
Published online:
Belkacem Bendiffalah 1
@article{CRMATH_2004__339_6_387_0, author = {Belkacem Bendiffalah}, title = {Modules d'extensions des alg\`ebres triangulaires}, journal = {Comptes Rendus. Math\'ematique}, pages = {387--390}, publisher = {Elsevier}, volume = {339}, number = {6}, year = {2004}, doi = {10.1016/j.crma.2004.07.007}, language = {fr}, }
Belkacem Bendiffalah. Modules d'extensions des algèbres triangulaires. Comptes Rendus. Mathématique, Volume 339 (2004) no. 6, pp. 387-390. doi : 10.1016/j.crma.2004.07.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.007/
[1] B. Bendiffalah, D. Guin, Cohomologie de l'algèbre triangulaire et applications, Algebra Montpellier Announcements 01 (2003)
[2] A generalization of the ring of triangular matrix, Nagoya Math. J., Volume 18 (1961), pp. 13-25
[3] Tensor Hochshild Homology and Cohomology, Lectures in Pure and Applied Math., vol. 210, Dekker, New York, 2000
[4] Hochschild cohomology and fundamental groups of incidence algebras, Commun. Algebra, Volume 29 (2001) no. 5, pp. 2269-2283
[5] On the deformation of algebra morphisms and diagrams, Trans. Amer. Math. Soc., Volume 279 (1983) no. 1, pp. 1-50
[6] Hochschild cohomology rings and triangular rings, Proc. of the 9th International Conference, Beijing 2000, vol. II, Beijing Normal University Press, 2002, pp. 192-200
[7] B. Keller, Derived invariance of higher structures on the Hochschild complex, Preprint, 2003
[8] Hochschild cohomology of triangular matrix algebras, J. Algebra, Volume 233 (2000) no. 2, pp. 502-525
[9] Formules explicites pour la dimension homologique des anneaux de matrices généralisées, C. R. Acad. Sci. Paris, Ser. I, Volume 273 (1971), pp. 1026-1029
[10] Explicit formulæ for the global homological dimensions of trivial extensions of rings, J. Algebra, Volume 27 (1973), pp. 380-413
Cited by Sources:
Comments - Policy