Comptes Rendus
Contrôle optimal
Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin–Voigt
[Exponential stability for the wave equations with local Kelvin–Voigt damping.]
Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 769-774.

We consider the stability of wave equations with local viscoelastic damping distributed around the boundary of domain. We show that the energy of the system goes uniformly and exponentially to zero for all initial data of finite energy.

Nous considérons la stabilité des équations des ondes avec un amortissement visco-élastique distribué autour de la frontière du domaine. Nous montrons que l'énergie du système tend vers zéro uniformément et exponentiellement pour toute donnée initiale d'énergie finie.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.09.029
Kangsheng Liu 1; Bopeng Rao 2

1 Department of Applied Mathematics, Zhejiang University, Hangzhou, 310027, Chine
2 Institut de recherche mathématique avancée, université Louis Pasteur de Strasbourg, 7, rue René-Descartes, 67084 Strasbourg cedex, France
@article{CRMATH_2004__339_11_769_0,
     author = {Kangsheng Liu and Bopeng Rao},
     title = {Stabilit\'e exponentielle des \'equations des ondes avec amortissement local de {Kelvin{\textendash}Voigt}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {769--774},
     publisher = {Elsevier},
     volume = {339},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crma.2004.09.029},
     language = {fr},
}
TY  - JOUR
AU  - Kangsheng Liu
AU  - Bopeng Rao
TI  - Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin–Voigt
JO  - Comptes Rendus. Mathématique
PY  - 2004
SP  - 769
EP  - 774
VL  - 339
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2004.09.029
LA  - fr
ID  - CRMATH_2004__339_11_769_0
ER  - 
%0 Journal Article
%A Kangsheng Liu
%A Bopeng Rao
%T Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin–Voigt
%J Comptes Rendus. Mathématique
%D 2004
%P 769-774
%V 339
%N 11
%I Elsevier
%R 10.1016/j.crma.2004.09.029
%G fr
%F CRMATH_2004__339_11_769_0
Kangsheng Liu; Bopeng Rao. Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin–Voigt. Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 769-774. doi : 10.1016/j.crma.2004.09.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.09.029/

[1] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[2] S. Chen; K. Liu; Z. Liu Spectrum and stability for elastic systems with global or local Kelvin–Voigt damping, SIAM J. Appl. Math., Volume 59 (1999), pp. 651-668

[3] N. Garofalo; F.H. Lin Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., Volume 40 (1987), pp. 347-366

[4] L. Hormander The Analysis of Linear Partial Differential Operators, Springer-Verlag, Berlin, 1985

[5] F.L. Huang Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, Volume 1 (1985), pp. 43-56

[6] H. Koch; D. Tataru Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math., Volume 54 (2001), pp. 339-360

[7] J. Lagnese Control of wave process with distributed controls supported on a subregion, SIAM J. Control Optim., Volume 21 (1983), pp. 68-85

[8] K. Liu; Z. Liu Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping, SIAM J. Control Optim., Volume 36 (1998) no. 3, pp. 1086-1098

[9] K. Liu; Z. Liu Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys., Volume 53 (2002), pp. 265-280

[10] K. Liu, B. Rao, Exponential stability for the wave equations with local Kelvin–Voigt damping, en préparation

[11] P. Loreti; B. Rao Compensation spectrale et taux de décroissance optimal de l'énergie de systèmes partiellement amortis, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 531-536

[12] J. Pruss On the spectrum of C0-semigroups, Trans. Am. Math. Soc., Volume 284 (1984), pp. 847-857

[13] X. Zhang; E. Zuazua Control, observation and polynomial decay for a coupled heat-wave system, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 823-828

[14] X. Zhang; E. Zuazua Polynomial decay and control of a 1-d model for fluid–structure interaction, C. R. Acad. Sci. Paris, Ser. I, Volume 336 (2003), pp. 745-750

[15] E. Zuazua Exponential decay for the semilinear wave equation with localized damping, Commun. Partial Differential Equations, Volume 15 (1990), pp. 205-235

Cited by Sources:

Comments - Policy


Articles of potential interest

A constructive method for the stabilization of the wave equation with localized Kelvin–Voigt damping

Louis Tebou

C. R. Math (2012)


Détermination du module d'élasticité de la matière cérébrale

Moez Chakroun; M Ghozlen; Imed Elloumi; ...

C. R. Phys (2009)