For denote by K the set of minimizers of the problem , over satisfying . We show that an extreme point of K must be a lifting of u, up to an additive constant. We also prove a more general result for the case of u in .
Pour on désigne par K l'ensemble des minimiseurs pour le problème sur l'ensemble des fonctions vérifiant . On démontre que chaque point extrême de K est un relèvement de u, à une constante additive près. On démontre ainsi une généralisation pour le cas .
Published online:
Arkady Poliakovsky 1
@article{CRMATH_2004__339_12_855_0,
author = {Arkady Poliakovsky},
title = {On a minimization problem related to lifting of {BV} functions with values in $ {S}^{1}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {855--860},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {12},
doi = {10.1016/j.crma.2004.09.030},
language = {en},
}
Arkady Poliakovsky. On a minimization problem related to lifting of BV functions with values in $ {S}^{1}$. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 855-860. doi: 10.1016/j.crma.2004.09.030
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, 2000
[2] H. Brezis, P. Mironescu, A.C. Ponce, maps with values into , in: S. Chanillo, P. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., American Mathematical Society, in press
[3] Lifting of BV functions with values in , C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 159-164
[4] Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998
[5] R. Ignat, The space : minimal connection and optimal lifting, preprint
Cited by Sources:
Comments - Policy
