Let be an abstract Wiener space and let is a positive random variable. Using the measure transportation of Monge–Kantorovitch, we prove that the operator corresponding to the kernel of the projection of L on the second Wiener chaos is lower bounded by a semi-positive Hilbert–Schmidt operator.
Soit un espace de Wiener abstrait et soit une variable aléatoire positive. A l'aide de la théorie de transport de mesure de Monge–Kantorovitch, nous montrons que le noyau de la projection de L dans le second chaos de Wiener est un opérateur de spectre inférieurement borné et que l'opérateur correspondant est inférieurement borné par un opérateur Hilbert–Schmidt semi-positif.
Accepted:
Published online:
Denis Feyel 1; A. Suleyman Üstünel 2
@article{CRMATH_2004__339_12_873_0, author = {Denis Feyel and A. Suleyman \"Ust\"unel}, title = {Some remarks about the positivity of random variables on a {Gaussian} probability space}, journal = {Comptes Rendus. Math\'ematique}, pages = {873--877}, publisher = {Elsevier}, volume = {339}, number = {12}, year = {2004}, doi = {10.1016/j.crma.2004.10.014}, language = {en}, }
TY - JOUR AU - Denis Feyel AU - A. Suleyman Üstünel TI - Some remarks about the positivity of random variables on a Gaussian probability space JO - Comptes Rendus. Mathématique PY - 2004 SP - 873 EP - 877 VL - 339 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2004.10.014 LA - en ID - CRMATH_2004__339_12_873_0 ER -
Denis Feyel; A. Suleyman Üstünel. Some remarks about the positivity of random variables on a Gaussian probability space. Comptes Rendus. Mathématique, Volume 339 (2004) no. 12, pp. 873-877. doi : 10.1016/j.crma.2004.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.014/
[1] Polar factorization and monotone rearrangement of vector valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375-417
[2] Linear Operators, 2, Interscience, 1963
[3] D. Feyel, A survey on the Monge transport problem, Preprint, 2004
[4] Capacités gaussiennes, Ann. Inst. Fourier, Volume 41 (1991) no. 1, pp. 49-76
[5] The notion of convexity and concavity on Wiener space, J. Funct. Anal., Volume 176 (2000), pp. 400-428
[6] Transport of measures on Wiener space and the Girsanov theorem, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 1, pp. 1025-1028
[7] Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space, Probab. Theory Related Fields, Volume 128 (2004), pp. 347-385
[8] Monge–Kantorovitch measure transportation, Monge–Ampère equation and the Itô calculus, Adv. Stud. Pure Math., vol. 41, Mathematical Society of Japan, 2004, pp. 49-74
[9] The strong solution of the Monge–Ampère equation on the Wiener space for log-concave densities, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 1, pp. 49-53
[10] Multiple Wiener integral, J. Math. Soc. Japan, Volume 3 (1951), pp. 157-164
[11] Stochastic Analysis, Springer-Verlag, 1997
[12] Geometry of differential space, Ann. Probab., Volume 1 (1973), pp. 197-206
[13] Positivité sur l'espace de Fock, Séminaire de Probabilités XXIV, Lecture Notes in Math., vol. 1426, Springer, 1990, pp. 461-465
[14] Homogeneous chaos revisited, Séminaire de Probabilités XXI, Lecture Notes in Math., vol. 1247, Springer, 1987, pp. 1-8
[15] Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995
[16] Transformation of Measure on Wiener Space, Springer-Verlag, 1999
[17] The homogeneous chaos, Amer. J. Math., Volume 60 (1930), pp. 897-936
Cited by Sources:
Comments - Policy