On considère un film courbé mince composé d'un matériau martensitique. Le comportement du film est décrit par une énergie totale composée d'une partie d'énergie interne et d'un terme d'énergie d'interface. Lorsque l'épaisseur du film courbé tend vers zéro, on montre en utilisant les outils de Γ-convergence, que les minimiseurs de l'énergie totale convergent vers les minimiseurs d'une énergie dépendant d'une déformation bidimensionnelle et d'un vecteur de Cosserat.
We consider a curved thin film made of a martensitic material. The behavior of the film is described by a free energy composed of a bulk energy and an interfacial energy term. When the thickness of the curved film goes to zero, we show with Γ-convergence arguments that the minimizers of the free energy converge to the minimizers of an energy depending on a two-dimensional deformation and one Cosserat vector field.
Accepté le :
Publié le :
Hervé Le Dret 1 ; Hamdi Zorgati 1
@article{CRMATH_2004__339_1_65_0, author = {Herv\'e Le Dret and Hamdi Zorgati}, title = {Films courb\'es minces martensitiques}, journal = {Comptes Rendus. Math\'ematique}, pages = {65--69}, publisher = {Elsevier}, volume = {339}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2004.04.020}, language = {fr}, }
Hervé Le Dret; Hamdi Zorgati. Films courbés minces martensitiques. Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 65-69. doi : 10.1016/j.crma.2004.04.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.020/
[1] H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston
[2] A theory of thin films of martensitic materials with applications to microactuators, J. Mech. Phys. Solids, Volume 47 (1999), pp. 531-576
[3] An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, 1993
[4] Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rend. Mat. (IV), Volume 8 (1975), pp. 277-294
[5] Su un tipo di convergenza variazionale, Atti. Accad. Naz. Lincei, Volume 58 (1975), pp. 842-850
[6] Heterogeneous wires made of martensitic materials, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 143-147
[7] H. Le Dret, N. Meunier, Modeling heterogeneous martensitic wires, in press
[8] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), Volume 74 (1995) no. 6, pp. 549-578
[9] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. Nonlinear Sci. (1996), pp. 59-84
[10] Heterogeneous thin films of martensitic materials, Arch. Rational Mech. Anal., Volume 153 (1993), pp. 157-199
Cité par Sources :
Commentaires - Politique