Every 4-manifold with trivial tangent bundle admits an Engel structure.
Toute variété de dimension 4 dont le fibré tangent est trivial admet une structure d'Engel.
Accepted:
Published online:
Thomas Vogel 1
@article{CRMATH_2005__340_1_43_0, author = {Thomas Vogel}, title = {A construction of {Engel} structures}, journal = {Comptes Rendus. Math\'ematique}, pages = {43--48}, publisher = {Elsevier}, volume = {340}, number = {1}, year = {2005}, doi = {10.1016/j.crma.2004.11.011}, language = {en}, }
Thomas Vogel. A construction of Engel structures. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 43-48. doi : 10.1016/j.crma.2004.11.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.11.011/
[1] Round handles and non-singular Morse–Smale flows, Ann. Math., Volume 102 (1975) no. 2, pp. 41-54
[2] Introduction to the h-Principle, Grad. Stud. Math., vol. 48, American Mathematical Society, 2002
[3] Zur Invariantentheorie der Systeme Pfaff'scher Gleichungen, Leipziger Ber., Volume 41 (1889), pp. 157-176
[4] H.J. Geiges, Review of [6], http://www.ams.org/mathscinet, MR 2001h:53127
[5] Characteristic classes for the degenerations of two-plane fields in four dimensions, Pacific J. Math., Volume 179 (1997) no. 2, pp. 355-370
[6] Engel deformations and contact structures, Northern Calif. Sympl. Geom. Sem. 103–117, Amer. Math. Soc. Transl. Ser. 2, vol. 196, 1999
[7] Nonsingular Morse–Smale flows on 3-dimensional manifolds, Topology, Volume 18 (1979) no. 1, pp. 41-53
[8] T. Vogel, Existence of Engel structures, thesis, Ludwig-Maximilians-Universität München, 2004
[9] T. Vogel, Existence of Engel structures, preprint, submitted for publication
Cited by Sources:
Comments - Policy