Comptes Rendus
Geometry
Lagrangian decomposability of some two-generator subgroups of PU(2,1)
[Décomposabilité par inversions lagrangiennes de certains sous-groupes à deux générateurs de PU(2,1)]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 5, pp. 353-358.

Nous décrivons les groupes d'isométries du plan hyperbolique complexe engendrés par deux éléments loxodromiques. Nous donnons une condition pour qu'un tel groupe soit décomposable en en un groupe engendré par trois involutions antiholomorphes, et utilisons ces décompositions pour décrire une boule de dimension trois dans l'espace de Teichmüller du tore épointé dans PU(2,1).

We describe isometry groups of the complex hyperbolic plane generated by two loxodromic motions. We give then a condition for such a group to be decomposable as a group generated by 3 antiholomorphic involutions, and use this decomposition to describe a 3-dimensional ball in the PU(2,1) Teichmüller space of the once punctured torus.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.01.008

Pierre Will 1

1 Institut de mathématiques, université Pierre et Marie Curie, 4, place Jussieu, 75252 Paris, France
@article{CRMATH_2005__340_5_353_0,
     author = {Pierre Will},
     title = {Lagrangian decomposability of some two-generator subgroups of $ \mathrm{PU}(2,1)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {353--358},
     publisher = {Elsevier},
     volume = {340},
     number = {5},
     year = {2005},
     doi = {10.1016/j.crma.2005.01.008},
     language = {en},
}
TY  - JOUR
AU  - Pierre Will
TI  - Lagrangian decomposability of some two-generator subgroups of $ \mathrm{PU}(2,1)$
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 353
EP  - 358
VL  - 340
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2005.01.008
LA  - en
ID  - CRMATH_2005__340_5_353_0
ER  - 
%0 Journal Article
%A Pierre Will
%T Lagrangian decomposability of some two-generator subgroups of $ \mathrm{PU}(2,1)$
%J Comptes Rendus. Mathématique
%D 2005
%P 353-358
%V 340
%N 5
%I Elsevier
%R 10.1016/j.crma.2005.01.008
%G en
%F CRMATH_2005__340_5_353_0
Pierre Will. Lagrangian decomposability of some two-generator subgroups of $ \mathrm{PU}(2,1)$. Comptes Rendus. Mathématique, Volume 340 (2005) no. 5, pp. 353-358. doi : 10.1016/j.crma.2005.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.01.008/

[1] E. Falbel; P.V. Koseleff Rigidity and flexibility of triangle groups in complex hyperbolic geometry, Topology, Volume 41 (2002) no. 4, pp. 767-786

[2] J. Gilman Two generators discrete subgroups of PSL(2,R), Mem. Amer. Math. Soc., Volume 117 (1995)

[3] W. Goldman Complex Hyperbolic Geometry, Oxford University Press, Oxford, 1999

[4] W. Goldman; J. Parker Complex hyperbolic ideal triangle groups, J. Reine Angew. Math., Volume 425 (1992), pp. 71-86

[5] L. Keen On Fricke moduli, Advances in the Theory of Riemann Surfaces, Proc. Conf., Stony Brook, NY, Ann. of Math. Stud., vol. 66, 1969, pp. 205-224

[6] A. Koranyi; H.M. Reimann The complex cross-ratio on the Heisenberg group, Enseign. Math., Volume 33 (1987), pp. 291-300

[7] R.E. Schwartz Complex hyperbolic triangle groups, Proc. Int. Math. Cong., Volume 1 (2002)

[8] P. Will, Punctured torus and Lagrangian triangle groups in PU(2,1), Preprint

[9] S. Wolpert On the Kähler form of the moduli space of once punctured tori, Comment. Math. Helv., Volume 58 (1983), pp. 246-256

Cité par Sources :

Commentaires - Politique