[Dispersion and Strichartz inequalities for the 1D Schrödinger equation with variables coefficients]
We study the dispersive properties of the solution to the 1D Schrödinger equation without an explicit formula of the solution, and we prove local Strichartz estimates for metrics . In the constant coefficient Schrödinger equation case, this method provides the classical dispersion in all dimension.
On se place dans le cas de la dimension 1, et on étudie les propriétés dispersives de la solution de l'équation de Schrödinger sans passer par une écriture explicite de la solution, on montre une estimation de Strichartz locale pour des métriques . Cette méthode permet de retrouver l'estimation de dispersion classique dans le cas à coefficients constants en toute dimension.
Accepted:
Published online:
Delphine Salort 1
@article{CRMATH_2005__340_6_427_0, author = {Delphine Salort}, title = {Dispersion et in\'egalit\'es de {Strichartz} pour l'\'equation de {Schr\"odinger} {1D} \`a coefficients variables}, journal = {Comptes Rendus. Math\'ematique}, pages = {427--430}, publisher = {Elsevier}, volume = {340}, number = {6}, year = {2005}, doi = {10.1016/j.crma.2005.02.005}, language = {fr}, }
TY - JOUR AU - Delphine Salort TI - Dispersion et inégalités de Strichartz pour l'équation de Schrödinger 1D à coefficients variables JO - Comptes Rendus. Mathématique PY - 2005 SP - 427 EP - 430 VL - 340 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2005.02.005 LA - fr ID - CRMATH_2005__340_6_427_0 ER -
Delphine Salort. Dispersion et inégalités de Strichartz pour l'équation de Schrödinger 1D à coefficients variables. Comptes Rendus. Mathématique, Volume 340 (2005) no. 6, pp. 427-430. doi : 10.1016/j.crma.2005.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.005/
[1] Dispersion and Strichartz inequalities for Schrödinger equations with singular coefficients, SIAM J. Math. Anal., Volume 35 (2003) no. 4, pp. 868-883
[2] N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, a paraître dans Amer. J. Math
[3] N. Burq, F. Planchon, Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications, manuscrit
[4] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal., Volume 14 (1990) no. 10, pp. 807-836
[5] Fluides parfaits incompressibles, Astérisque, Volume 230 (1995)
[6] Smoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys., Volume 144 (1992) no. 1, pp. 163-188
[7] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980
[8] D. Salort, Dispersion and Strichartz inequalities for the one-dimensional Schrödinger equation with variable coefficients, manuscrit
[9] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Commun. Partial Differential Equations, Volume 27 (2002) no. 7–8, pp. 1337-1372
Cited by Sources:
Comments - Policy