We propose a general method of constructing spherical CR manifolds by gluing tetrahedra adapted to CR geometry. We obtain spherical CR structures on the complement of the figure eight knot and the Whitehead link complement with holonomy in and respectively (the same integer rings appearing in real hyperbolic geometry).
On propose une méthode de construction géométrique des variétés CR sphériques par recollement des tétrahèdres. Pour les complémentaires de la figure huit et l'entrelac de Whitehead, on obtient des structures avec holonomies dans et respectivement (les mêmes anneaux d'entiers que dans le cas hyperbolique réel).
Accepted:
Published online:
Elisha Falbel 1
@article{CRMATH_2005__340_7_503_0, author = {Elisha Falbel}, title = {Constructing spherical {CR} manifolds by gluing tetrahedra}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--506}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.02.014}, language = {en}, }
Elisha Falbel. Constructing spherical CR manifolds by gluing tetrahedra. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 503-506. doi : 10.1016/j.crma.2005.02.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.014/
[1] A Poincaré's polyhedron theorem for complex hyperbolic geometry, J. Reine Angew. Math., Volume 516 (1999), pp. 133-158
[2] Complex Hyperbolic Geometry, Oxford Math. Monographs, Oxford University Press, 1999
[3] A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc., Volume 77 (1975), pp. 281-288
[4] Real hyperbolic on the outside, complex hyperbolic on the inside, Invent. Math., Volume 151 (2003) no. 2, pp. 221-295
[5] Spherical CR Geometry and Dehn Surgery Research Monograph, 2004
[6] W. Thurston, The geometry and topology of 3-manifolds, Lecture notes, 1979
[7] Lagrangian decomposability of some two-generator subgroups of , C. R. Acad. Sci. Paris, Ser. I, Volume 340 (2005) no. 5, pp. 353-358
Cited by Sources:
Comments - Policy