[Existence par compacticité pour opérateurs maximaux monotone elliptiques]
Dans cette Note nous proposons une méthode nouvelle de démonstation de l'existence de solutions de
In this Note we propose a new method of proving the existence of solutions to
Accepté le :
Publié le :
Piotr Gwiazda 1 ; Anna Zatorska-Goldstein 1
@article{CRMATH_2005__340_7_489_0, author = {Piotr Gwiazda and Anna Zatorska-Goldstein}, title = {Existence via compactness for maximal monotone elliptic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--492}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.02.017}, language = {en}, }
Piotr Gwiazda; Anna Zatorska-Goldstein. Existence via compactness for maximal monotone elliptic operators. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 489-492. doi : 10.1016/j.crma.2005.02.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.017/
[1] A version of the fundamental theorem for Young measures (M. Rascle; D. Serre; M. Slemrod, eds.), PDE's and Continuum Models of Phase Transitions, Lecture Notes in Phys., vol. 334, Springer, 1989, pp. 207-215
[2] Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663
[3] Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. (4), Volume 152 (1988), pp. 183-196
[4] G-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 7 (1990) no. 3, pp. 123-160
[5] Monotone operators in divergence form with x-dependent multivalued graphs, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat., Volume 7 (2004) no. 1, pp. 23-59
[6] Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969
- Nonlinear parabolic problems in Musielak–Orlicz spaces, Nonlinear Analysis: Theory, Methods Applications, Volume 98 (2014), p. 48 | DOI:10.1016/j.na.2013.11.026
- On measure-valued solutions to a two-dimensional gravity-driven avalanche flow model, Mathematical Methods in the Applied Sciences, Volume 28 (2005) no. 18, p. 2201 | DOI:10.1002/mma.660
Cité par 2 documents. Sources : Crossref
Commentaires - Politique