In this Note we propose a new method of proving the existence of solutions to , when has x-dependent maximal monotone graph. The idea is based on the theory of Young measures and on the method of compensated compactness. Alternative approaches were proposed elsewhere. However, our method allows us to obtain also the strong convergence of approximate solutions.
Dans cette Note nous proposons une méthode nouvelle de démonstation de l'existence de solutions de , où a un graphe maximale monotone dépendant de x. L'idée de cette méthode est d'utiliser la théorie des mésures de Young et la méthode de compacticité par compensation. Une autre approche a été proposée ailleurs. Néanmoins, notre méthode permet d'obtenir la convergence forte des solutions approchées.
Accepted:
Published online:
Piotr Gwiazda 1; Anna Zatorska-Goldstein 1
@article{CRMATH_2005__340_7_489_0, author = {Piotr Gwiazda and Anna Zatorska-Goldstein}, title = {Existence via compactness for maximal monotone elliptic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--492}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.02.017}, language = {en}, }
Piotr Gwiazda; Anna Zatorska-Goldstein. Existence via compactness for maximal monotone elliptic operators. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 489-492. doi : 10.1016/j.crma.2005.02.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.017/
[1] A version of the fundamental theorem for Young measures (M. Rascle; D. Serre; M. Slemrod, eds.), PDE's and Continuum Models of Phase Transitions, Lecture Notes in Phys., vol. 334, Springer, 1989, pp. 207-215
[2] Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663
[3] Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. (4), Volume 152 (1988), pp. 183-196
[4] G-convergence of monotone operators, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 7 (1990) no. 3, pp. 123-160
[5] Monotone operators in divergence form with x-dependent multivalued graphs, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat., Volume 7 (2004) no. 1, pp. 23-59
[6] Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Gauthier-Villars, Paris, 1969
Cited by Sources:
Comments - Policy