[Anisotropic effects by homogenization in a free boundary problem]
The Elrod–Adams model is a pressure–saturation formulation which takes into account cavitation phenomena in thin fluid films mechanics. We study the asymptotic behavior of the model, using the two-scale convergence technique, in devices such as journal bearings. Interest is highly motivated by the roughness effects of the surfaces. Anisotropic effects appear on the coefficients, which is usual, but also on the saturation function, since various saturation functions appear through the homogenization process.
Le modèle d'Elrod–Adams est une formulation en pression–saturation, qui permet de prendre en compte les phénomènes de cavitation en mécanique des films minces. Nous étudions le comportement asymptotique, par homogénéisation double-échelle, de la solution dans des mécanismes lubrifiés de type coussinet, dont l'intérêt est motivé par la prise en compte des rugosités des surfaces. Les effets d'anisotropie apparaissent sur les coefficients, ce qui est classique, mais aussi sur la saturation.
Accepted:
Published online:
Guy Bayada 1, 2; Sébastien Martin 1; Carlos Vazquez 3
@article{CRMATH_2005__340_7_541_0, author = {Guy Bayada and S\'ebastien Martin and Carlos Vazquez}, title = {Effets d'anisotropie par homog\'en\'eisation dans un probl\`eme \`a fronti\`ere libre}, journal = {Comptes Rendus. Math\'ematique}, pages = {541--546}, publisher = {Elsevier}, volume = {340}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.02.021}, language = {fr}, }
TY - JOUR AU - Guy Bayada AU - Sébastien Martin AU - Carlos Vazquez TI - Effets d'anisotropie par homogénéisation dans un problème à frontière libre JO - Comptes Rendus. Mathématique PY - 2005 SP - 541 EP - 546 VL - 340 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2005.02.021 LA - fr ID - CRMATH_2005__340_7_541_0 ER -
Guy Bayada; Sébastien Martin; Carlos Vazquez. Effets d'anisotropie par homogénéisation dans un problème à frontière libre. Comptes Rendus. Mathématique, Volume 340 (2005) no. 7, pp. 541-546. doi : 10.1016/j.crma.2005.02.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.02.021/
[1] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518
[2] Strömungen durch inhomogene poröse Medien mit freiem Rand, J. Reine Angew. Math., Volume 305 (1979), pp. 89-115
[3] Numerical solution of steady-state porous flow free boundary problems, Numer. Math., Volume 36 (1980–1981) no. 1, pp. 73-98
[4] On the uniqueness of the solution of an evolution free boundary problem in theory of lubrication, Nonlinear Anal., Volume 54 (2003) no. 5, pp. 845-872
[5] A free boundary problem in theory of lubrication, Commun. Partial Differential Equations, Volume 19 (1994) no. 11–12, pp. 1743-1761
[6] Homogenization of the Stokes system in a thin film flow with rapidly varying thickness, RAIRO Modél. Math. Anal. Numér., Volume 23 (1989) no. 2, pp. 205-234
[7] Characteristics method for the formulation and computation of a free boundary cavitation problem, J. Comput. Appl. Math., Volume 98 (1998) no. 2, pp. 191-212
[8] A double-scale analysis approach of the Reynolds roughness. Comments and application to the journal bearing, ASME J. Tribology, Volume 111 (1989), pp. 323-330
[9] Sur une nouvelle formulation du problème de l'écoulement à travers une digue, C. R. Acad. Sci. Paris, Sér. A, Volume 287 (1978) no. 9, pp. 711-714
[10] Periodic unfolding and homogenization, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 335 (2002) no. 1, pp. 99-104
[11] Two-scale convergence, Int. J. Pure Appl. Math., Volume 2 (2002) no. 1, pp. 35-86
[12] Some remarks on the homogenization of the dam problem, Manuscripta Math., Volume 4 (1984) no. 1–3, pp. 65-82
Cited by Sources:
Comments - Policy