[Statistics related to Green's function of the Laplacian]
In this Note, we show that an invariant test of uniformity for a sample from a compact 2-point homogeneous space can be based on the Green function of the Laplacian. The three celebrated Watson, Cramér–von-Mises and Anderson–Darling statistics are shown to be particular cases of this family of statistics.
Dans cette Note, nous montrons qu'un test d'uniformité pour un échantillon de points d'un espace 2-point homogène peut être basé sur la fonction de Green du laplacien. Nous retrouvons les célèbres statistiques de Watson, Cramér–von Mises et Anderson–Darling comme des cas particuliers de cette classe de statistiques.
Accepted:
Published online:
Jean-Renaud Pycke 1
@article{CRMATH_2005__341_8_515_0, author = {Jean-Renaud Pycke}, title = {Des statistiques li\'ees \`a la fonction de {Green} du laplacien}, journal = {Comptes Rendus. Math\'ematique}, pages = {515--518}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.03.017}, language = {fr}, }
Jean-Renaud Pycke. Des statistiques liées à la fonction de Green du laplacien. Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 515-518. doi : 10.1016/j.crma.2005.03.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.017/
[1] Orthogonal Polynomials and Special Functions, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1975
[2] Nonlinear Analysis on Manifolds, Monge–Ampère Equations, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 252, Springer-Verlag, New York, 1982
[3] Le Spectre d'une Variété Riemannienne, Lecture Notes in Math., vol. 194, Springer-Verlag, 1971
[4] Manifolds all of Whose Geodesics Are Closed, Ergeb. Math. Grenzgeb., Results in Mathematics and Related Areas, vol. 93, Springer-Verlag, Berlin–New York, 1978 (ix+262 p.)
[5] Riemannian Symmetric Spaces of Rank One, Lecture Notes in Pure and Appl. Math., vol. 5, Marcel Dekker, New York, 1972 (vii+81 p.)
[6] Distribution Theory for Tests Based on the Sample Distribution Function, CBMS-NSF Regional Conf. Ser. in Appl. Math., vol. 9, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973
[7] Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms, Ann. Statist., Volume 3 (1975) no. 6, pp. 1243-1266
[8] The volume of a small geodesic ball of a Riemannian manifold, Michigan Math. J., Volume 20 (1973), pp. 329-344
[9] Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure Appl. Math., vol. 113, Academic Press, Orlando, FL, 1984 (xix+654 p.)
[10] Theory of U-Statistics, Math. Appl., vol. 273, Kluwer Academic Publishers Group, Dordrecht, 1994 (x+552 p.)
Cited by Sources:
Comments - Policy