We utilize the method of Bellman functions to derive new -estimates of Littlewood–Paley type involving . Among the applications to singular integrals we improve the bounds for the Ahlfors–Beurling operator on when . In addition, dimensionless estimates of Riesz transforms in the classical as well as in the Ornstein–Uhlenbeck setting are attained.
On utilise la technique de la fonction de Bellman pour obtenir les estimations nouvelles et assez générales du type de Littlewood–Paley. Comme la premier consequence de nos estimation du type de Littlewood–Paley on derive les resultats classiques concernants les bornes libre de dimension pour les transformations de Riesz. La deuxième consequence est une amilioration de la borne dans de transformation de Ahlfors–Beurling quand .
Accepted:
Published online:
Oliver Dragičević 1; Alexander Volberg 2
@article{CRMATH_2005__340_10_731_0, author = {Oliver Dragi\v{c}evi\'c and Alexander Volberg}, title = {Bellman function for the estimates of {Littlewood{\textendash}Paley} type and asymptotic estimates in the $ p-1$ problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {731--734}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.03.021}, language = {en}, }
TY - JOUR AU - Oliver Dragičević AU - Alexander Volberg TI - Bellman function for the estimates of Littlewood–Paley type and asymptotic estimates in the $ p-1$ problem JO - Comptes Rendus. Mathématique PY - 2005 SP - 731 EP - 734 VL - 340 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2005.03.021 LA - en ID - CRMATH_2005__340_10_731_0 ER -
%0 Journal Article %A Oliver Dragičević %A Alexander Volberg %T Bellman function for the estimates of Littlewood–Paley type and asymptotic estimates in the $ p-1$ problem %J Comptes Rendus. Mathématique %D 2005 %P 731-734 %V 340 %N 10 %I Elsevier %R 10.1016/j.crma.2005.03.021 %G en %F CRMATH_2005__340_10_731_0
Oliver Dragičević; Alexander Volberg. Bellman function for the estimates of Littlewood–Paley type and asymptotic estimates in the $ p-1$ problem. Comptes Rendus. Mathématique, Volume 340 (2005) no. 10, pp. 731-734. doi : 10.1016/j.crma.2005.03.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.03.021/
[1] Space–time Brownian motion and the Beurling–Ahlfors transform, Indiana Univ. Math. J., Volume 52 (2003) no. 4, pp. 981-990
[2] Sharp inequalities for martingales and stochastic integrals, Astérisque, Volume 157–158 (1988), pp. 75-94
[3] O. Dragičević, A. Volberg, Bellman functions and dimensionless estimates of Littlewood–Paley type, J. Operator Theory, in press
[4] O. Dragičević, A. Volberg, Bellman function, Littlewood–Paley estimates and asymptotics for the Ahlfors–Beurling operator in , preprint
[5] Extremal inequalities in Sobolev spaces and quasiconformal mappings, Z. Anal. Anwendungen, Volume 1 (1982), pp. 1-16
[6] Optimal Control of Diffusion Processes, Springer-Verlag, New York, 1980 (308 p)
[7] The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, St. Petersburg Math. J., Volume 8 (1997) no. 5, pp. 721-824
[8] Bellman function and two-weight inequality for martingale transform, J. Amer. Math. Soc., Volume 12 (1999) no. 4, pp. 909-928
[9] Bellman function in stochastic control and harmonic analysis, Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 393-423
[10] Heat extension of the Beurling operator and estimates for its norm, Algebra i Analiz, Volume 15 (2003) no. 4, pp. 142-158 (in Russian)
[11] Heating of the Ahlfors–Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J., Volume 112 (2002) no. 2, pp. 281-305
Cited by Sources:
Comments - Policy