Comptes Rendus
Numerical Analysis
New constructions of perfectly matched layers for the linearized Euler equations
[Nouvelles constructions de couches parfaitement adaptées pour le systéme d'Euler linéarisé]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 10, pp. 775-778.

Based on a PML for the advective wave equation, we propose two PML models for the linearized Euler equations. The derivation of the first model can be applied to other physical models. The second model was implemented. Numerical results are shown.

A partir d'une couche adaptée pour l'équation des ondes advectives, nous proposons deux modèles de telles couches pour les équations d'Euler linéarisées. La construction du premier modèle peut être appliqué à d'autres systèmes d'équations aux dérivées partielles. Le second modèle a été implémenté. Des résultats numériques illustrent l'intérêt de cette construction.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.04.013

Frédéric Nataf 1

1 CMAP, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMATH_2005__340_10_775_0,
     author = {Fr\'ed\'eric Nataf},
     title = {New constructions of perfectly matched layers for the linearized {Euler} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {775--778},
     publisher = {Elsevier},
     volume = {340},
     number = {10},
     year = {2005},
     doi = {10.1016/j.crma.2005.04.013},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Nataf
TI  - New constructions of perfectly matched layers for the linearized Euler equations
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 775
EP  - 778
VL  - 340
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2005.04.013
LA  - en
ID  - CRMATH_2005__340_10_775_0
ER  - 
%0 Journal Article
%A Frédéric Nataf
%T New constructions of perfectly matched layers for the linearized Euler equations
%J Comptes Rendus. Mathématique
%D 2005
%P 775-778
%V 340
%N 10
%I Elsevier
%R 10.1016/j.crma.2005.04.013
%G en
%F CRMATH_2005__340_10_775_0
Frédéric Nataf. New constructions of perfectly matched layers for the linearized Euler equations. Comptes Rendus. Mathématique, Volume 340 (2005) no. 10, pp. 775-778. doi : 10.1016/j.crma.2005.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.013/

[1] E. Bécache; A.-S. Bonnet-Ben Dhia; G. Legendre Perfectly matched layers for the convected Helmholtz equation, SIAM J. Numer. Anal., Volume 42 (2004) no. 1, pp. 409-433 (electronic)

[2] J.P. Berenger A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 114 (1994) no. 2

[3] J. Diaz; P. Joly Stabilized perfectly matched layer for advective acoustics, Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, Berlin, 2003, pp. 115-119

[4] Th. Hagstrom A new construction of perfectly matched layers for hyperbolic systems with applications to the linearized Euler equations, Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, 2003, pp. 125-129

[5] F. Nataf A new construction of perfectly matched layers for the linearized Euler equations http://www.cmap.polytechnique.fr/preprint/repository/566.pdf (submitted for publication)

[6] A.N. Rahmouni An algebraic method to develop well-posed PML models. Absorbing layers, perfectly matched layers, linearized Euler equations, J. Comput. Phys., Volume 197 (2004) no. 1, pp. 99-115

[7] J.T. Wloka; B. Rowley; B. Lawruk Boundary Value Problems for Elliptic Systems, Cambridge University Press, Cambridge, 1995

  • Florent Pled; Christophe Desceliers Review and Recent Developments on the Perfectly Matched Layer (PML) Method for the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains, Archives of Computational Methods in Engineering, Volume 29 (2022) no. 1, p. 471 | DOI:10.1007/s11831-021-09581-y
  • Maryam Morvaridi; Michele Brun Perfectly matched layers for flexural waves in Kirchhof–Love plates, International Journal of Solids and Structures, Volume 134 (2018), p. 293 | DOI:10.1016/j.ijsolstr.2017.11.009
  • Eliane Bécache; Patrick Joly; Maryna Kachanovska Stable perfectly matched layers for a cold plasma in a strong background magnetic field, Journal of Computational Physics, Volume 341 (2017), pp. 76-101 | DOI:10.1016/j.jcp.2017.03.051 | Zbl:1376.78003
  • M. Morvaridi; M. Brun Perfectly matched layers for flexural waves: An exact analytical model, International Journal of Solids and Structures, Volume 102-103 (2016), p. 1 | DOI:10.1016/j.ijsolstr.2016.10.024
  • A. Żak; M. Krawczuk; Ł. Skarbek; M. Palacz Numerical analysis of elastic wave propagation in unbounded structures, Finite Elements in Analysis and Design, Volume 90 (2014), p. 1 | DOI:10.1016/j.finel.2014.06.001
  • Frédéric Nataf A new approach to perfectly matched layers for the linearized Euler system, Journal of Computational Physics, Volume 214 (2006) no. 2, pp. 757-772 | DOI:10.1016/j.jcp.2005.10.014 | Zbl:1088.76052
  • Frédéric Nataf New constructions of perfectly matched layers for the linearized Euler equations, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 10, pp. 775-778 | DOI:10.1016/j.crma.2005.04.013 | Zbl:1159.76365
  • Victorita Dolean; Frédéric Nataf; Gerd Rapin New constructions of domain decomposition methods for systems of PDEs, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 9, pp. 693-696 | DOI:10.1016/j.crma.2005.03.026 | Zbl:1071.65166

Cité par 8 documents. Sources : Crossref, zbMATH

Commentaires - Politique