[Nouvelles constructions de couches parfaitement adaptées pour le systéme d'Euler linéarisé]
Based on a PML for the advective wave equation, we propose two PML models for the linearized Euler equations. The derivation of the first model can be applied to other physical models. The second model was implemented. Numerical results are shown.
A partir d'une couche adaptée pour l'équation des ondes advectives, nous proposons deux modèles de telles couches pour les équations d'Euler linéarisées. La construction du premier modèle peut être appliqué à d'autres systèmes d'équations aux dérivées partielles. Le second modèle a été implémenté. Des résultats numériques illustrent l'intérêt de cette construction.
Accepté le :
Publié le :
Frédéric Nataf 1
@article{CRMATH_2005__340_10_775_0, author = {Fr\'ed\'eric Nataf}, title = {New constructions of perfectly matched layers for the linearized {Euler} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {775--778}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2005}, doi = {10.1016/j.crma.2005.04.013}, language = {en}, }
Frédéric Nataf. New constructions of perfectly matched layers for the linearized Euler equations. Comptes Rendus. Mathématique, Volume 340 (2005) no. 10, pp. 775-778. doi : 10.1016/j.crma.2005.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.013/
[1] Perfectly matched layers for the convected Helmholtz equation, SIAM J. Numer. Anal., Volume 42 (2004) no. 1, pp. 409-433 (electronic)
[2] A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 114 (1994) no. 2
[3] Stabilized perfectly matched layer for advective acoustics, Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, Berlin, 2003, pp. 115-119
[4] A new construction of perfectly matched layers for hyperbolic systems with applications to the linearized Euler equations, Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, 2003, pp. 125-129
[5] A new construction of perfectly matched layers for the linearized Euler equations http://www.cmap.polytechnique.fr/preprint/repository/566.pdf (submitted for publication)
[6] An algebraic method to develop well-posed PML models. Absorbing layers, perfectly matched layers, linearized Euler equations, J. Comput. Phys., Volume 197 (2004) no. 1, pp. 99-115
[7] Boundary Value Problems for Elliptic Systems, Cambridge University Press, Cambridge, 1995
- Review and Recent Developments on the Perfectly Matched Layer (PML) Method for the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains, Archives of Computational Methods in Engineering, Volume 29 (2022) no. 1, p. 471 | DOI:10.1007/s11831-021-09581-y
- Perfectly matched layers for flexural waves in Kirchhof–Love plates, International Journal of Solids and Structures, Volume 134 (2018), p. 293 | DOI:10.1016/j.ijsolstr.2017.11.009
- Stable perfectly matched layers for a cold plasma in a strong background magnetic field, Journal of Computational Physics, Volume 341 (2017), pp. 76-101 | DOI:10.1016/j.jcp.2017.03.051 | Zbl:1376.78003
- Perfectly matched layers for flexural waves: An exact analytical model, International Journal of Solids and Structures, Volume 102-103 (2016), p. 1 | DOI:10.1016/j.ijsolstr.2016.10.024
- Numerical analysis of elastic wave propagation in unbounded structures, Finite Elements in Analysis and Design, Volume 90 (2014), p. 1 | DOI:10.1016/j.finel.2014.06.001
- A new approach to perfectly matched layers for the linearized Euler system, Journal of Computational Physics, Volume 214 (2006) no. 2, pp. 757-772 | DOI:10.1016/j.jcp.2005.10.014 | Zbl:1088.76052
- New constructions of perfectly matched layers for the linearized Euler equations, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 10, pp. 775-778 | DOI:10.1016/j.crma.2005.04.013 | Zbl:1159.76365
- New constructions of domain decomposition methods for systems of PDEs, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 340 (2005) no. 9, pp. 693-696 | DOI:10.1016/j.crma.2005.03.026 | Zbl:1071.65166
Cité par 8 documents. Sources : Crossref, zbMATH
Commentaires - Politique