Comptes Rendus
Mathematical Analysis/Functional Analysis
On some problems related to Berezin symbols
Comptes Rendus. Mathématique, Volume 340 (2005) no. 10, pp. 715-718.

The following problem was formulated by Zorboska [Proc. Amer. Math. Soc. 131 (2003) 793–800]: It is not known if the Berezin symbols of a bounded operator on the Bergman space La2(D) must have radial limits almost everywhere on the unit circle. In this Note we solve this problem in the negative, showing that there is a concrete class of diagonal operators for which the Berezin symbol does not have radial boundary values anywhere on the unit circle. A similar result is also obtained in case of the Hardy space H2(D) over the unit disk D. Moreover, we give an alternative proof to the famous theorem of Beurling on z-invariant subspaces in the Hardy space H2(D), using the concepts of reproducing kernels and Berezin symbols.

Le problème suivant est formulé par Zorboska [Proc. Amer. Math. Soc. 131 (2003) 793–800] : les symboles de Berezin d'un opérateur borné sur l'espace de Bergman La2(D) ont-ils nécessairement des limites radiales presque partout sur le cercle unité ? Dans cet article, nous donnons une réponse négative à cette question en exhibant une classe concrète d'opérateurs diagonaux pour lesquels une telle limite n'existe en aucun point du cerle unité. Nous obtenons un résultat semblable dans le cas des espaces de Hardy H2(D) sur le dique unité D. De plus nous donnons une nouvelle preuve, utilisant les notions de noyaux reproduisants et de symboles de Berezin, du célèbre théorème de Beurling concernant les sous-espaces z-invariants de H2(D).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2005.04.021

Mubariz T. Karaev 1

1 Department of Mathematics, Faculty of Arts and Sciences, Suleyman Demirel University, 32260 Isparta, Turkey
@article{CRMATH_2005__340_10_715_0,
     author = {Mubariz T. Karaev},
     title = {On some problems related to {Berezin} symbols},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {715--718},
     publisher = {Elsevier},
     volume = {340},
     number = {10},
     year = {2005},
     doi = {10.1016/j.crma.2005.04.021},
     language = {en},
}
TY  - JOUR
AU  - Mubariz T. Karaev
TI  - On some problems related to Berezin symbols
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 715
EP  - 718
VL  - 340
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crma.2005.04.021
LA  - en
ID  - CRMATH_2005__340_10_715_0
ER  - 
%0 Journal Article
%A Mubariz T. Karaev
%T On some problems related to Berezin symbols
%J Comptes Rendus. Mathématique
%D 2005
%P 715-718
%V 340
%N 10
%I Elsevier
%R 10.1016/j.crma.2005.04.021
%G en
%F CRMATH_2005__340_10_715_0
Mubariz T. Karaev. On some problems related to Berezin symbols. Comptes Rendus. Mathématique, Volume 340 (2005) no. 10, pp. 715-718. doi : 10.1016/j.crma.2005.04.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.04.021/

[1] Sh. Axler; D. Zheng The Berezin transform on the Toeplitz algebra, Studia Math., Volume 127 (1998), pp. 113-136

[2] C.A. Berger; L.A. Coburn Toeplitz operators on the Segal–Bergman space, Trans. Amer. Math. Soc., Volume 301 (1987), pp. 813-829

[3] A. Beurling On two problems concerning linear transformations in Hilbert space, Acta Math., Volume 81 (1949), pp. 239-255

[4] E. Fricain Uniqueness theorems for analytic vector-valued functions, J. Math. Sci. (New York), Volume 101 (2000), pp. 3193-3210 (Translation from Zap. Nauch. Semin. POMI, 247, 1997, pp. 242-267)

[5] V. Gullemin Toeplitz operators in n-dimensions, Integral Equations Operator Theory, Volume 7 (1984), pp. 145-205

[6] K. Guo; R. Yang The core function of submodules over the bidisk, Indiana Univ. Math. J., Volume 53 (2004), pp. 205-222

[7] P.R. Halmos A Hilbert Space Problem Book, Springer-Verlag, New York, 1982

[8] M.T. Karaev Berezin symbols and Schatten–von Neumann classes, Math. Notes, Volume 72 (2002), pp. 185-192 (Translated from Mat. Zametki, 72, 2002, pp. 207-215)

[9] M.T. Karaev Functional analysis proofs of Abel's theorems, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 2327-2329

[10] S. Pehlivan; M.T. Karaev Some results related with statistical convergence and Berezin symbols, J. Math. Anal. Appl., Volume 299 (2004), pp. 333-340

[11] R. Yang Beurling's phenomenon in two variables, Integral Equations Operator Theory, Volume 48 (2004), pp. 411-423

[12] K. Zhu Operator Theory in Function Spaces, Marcel Dekker, 1990

[13] N. Zorboska Berezin transforms and radial operators, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 793-800

Cited by Sources:

Comments - Policy