This Note is devoted to the study of a Liouville-type comparison principle for entire weak solutions of semilinear elliptic partial differential inequalities of the form , where is a given number and L is a linear (possibly non-uniformly) elliptic partial differential operator of second order in divergent form given formally by the relation
Cette Note est consacré à l'étude d'un principe de comparaison de type Liouville pour des solutions entières faibles d'inégalités aux derivées partielles elliptiques semi-linéaires de la forme , où est un nombre donné et L un opérateur aux dérivées partielles (possiblement non-uniformément) elliptique linéaire de deuxième ordre en forme divergente donné formellement par la relation
Accepted:
Published online:
Vasilii V. Kurta 1
@article{CRMATH_2005__341_2_93_0, author = {Vasilii V. Kurta}, title = {On a {Liouville-type} comparison principle for solutions of semilinear elliptic partial differential inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {93--96}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.004}, language = {en}, }
TY - JOUR AU - Vasilii V. Kurta TI - On a Liouville-type comparison principle for solutions of semilinear elliptic partial differential inequalities JO - Comptes Rendus. Mathématique PY - 2005 SP - 93 EP - 96 VL - 341 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2005.06.004 LA - en ID - CRMATH_2005__341_2_93_0 ER -
Vasilii V. Kurta. On a Liouville-type comparison principle for solutions of semilinear elliptic partial differential inequalities. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 93-96. doi : 10.1016/j.crma.2005.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.004/
[1] On a Liouville-type comparison principle for solutions of quasilinear elliptic inequalities, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 11, pp. 897-900
[2] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Doctoral Dissert., Steklov Math. Inst., Moscow, 1994
Cited by Sources:
Comments - Policy