We present two applications of a new method for proving upper bounds for singular perturbation problems involving maps of bounded variation. The two problems are of first and second order, respectively. The first is a minimization problem, related to the question of optimal lifting for BV-maps with values in , for which we prove a Γ-convergence result. The second problem involves the Aviles–Giga functional, , for which we construct upper bounds via a sequence of functions whose limit has gradient in BV.
On présente deux applications d'une nouvelle méthode pour construire des bornes supérieures pour des problèmes de perturbation singulière où interviennent des applications à variation bornée. On applique cette méthode à deux problèmes, l'un du premier ordre et l'autre du second. Le premier est un problème de minimisation lié à la question de relèvement optimal pour des applications à variation bornée à valeurs dans . Pour ce problème on démontre un théorème de Γ-convergence. Le second problème concerne la fonctionnelle d'Aviles–Giga, , pour laquelle on construit une borne supérieure via une suite de fonctions ayant comme limite une fonction dont le gradient est dans BV.
Published online:
Arkady Poliakovsky 1
@article{CRMATH_2005__341_2_97_0, author = {Arkady Poliakovsky}, title = {A method for establishing upper bounds for singular perturbation problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {97--102}, publisher = {Elsevier}, volume = {341}, number = {2}, year = {2005}, doi = {10.1016/j.crma.2005.06.009}, language = {en}, }
Arkady Poliakovsky. A method for establishing upper bounds for singular perturbation problems. Comptes Rendus. Mathématique, Volume 341 (2005) no. 2, pp. 97-102. doi : 10.1016/j.crma.2005.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.06.009/
[1] Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 17 (1990), pp. 439-478
[2] Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations, Volume 9 (1999), pp. 327-355
[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monographs, Oxford University Press, New York, 2000
[4] A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ., Volume 12 (1987), pp. 1-16
[5] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields, Proc. Roy. Soc. Edinburgh Sect. A, Volume 129 (1999), pp. 1-17
[6] S. Conti, C. De Lellis, Sharp upper bounds for a variational problem with singular perturbation, Preprint
[7] Lifting of BV functions with values in , C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 159-164
[8] An example in the gradient theory of phase transitions, ESAIM Control Optim. Calc. Var., Volume 7 (2002), pp. 285-289 (electronic)
[9] A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001), pp. 833-844
[10] The geometry of the phase diffusion equation, J. Nonlinear Sci., Volume 10 (2000), pp. 223-274
[11] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992
[12] Minimal Surfaces and Functions of Bounded Variation, Monographs Math., vol. 80, Birkhäuser, Basel, 1984
[13] R. Ignat, A. Poliakovsky, An example related to optimal lifting in BV-space, Preprint
[14] Singular perturbation and the energy of folds, J. Nonlinear Sci., Volume 10 (2000), pp. 355-390
[15] The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., Volume 98 (1987), pp. 123-142
[16] A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields, Preprint
[17] A. Poliakovsky, On a singular perturbation problem related to optimal lifting in BV-space, Preprint
[18] The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., Volume 101 (1988), pp. 209-260
[19] Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Martinus Nijhoff, Dordrecht, 1985
Cited by Sources:
Comments - Policy