Comptes Rendus
Probabilités
Distance riemannienne, théorème de Rademacher et inégalité de transport sur le groupe des lacets
Comptes Rendus. Mathématique, Volume 341 (2005) no. 7, pp. 445-450.

Dans cette Note, nous allons considérer la distance riemannienne sur le groupe des lacets, qui sera identifie à celle introduite par Hino et Ramirez [M. Hino, J.A. Ramirez, Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab. 31 (2003) 1254–1295]. Une inégalité de transport est établie.

In this Note, we shall consider the Riemannian distance on loop groups, which will be identified to one introduced by Hino and Ramirez [M. Hino, J.A. Ramirez, Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab. 31 (2003) 1254–1295]. A transportation cost inequality is established.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.08.004

Shizan Fang 1 ; Jinghai Shao 1, 2

1 Institut de mathématiques de Bourgogne, B.P. 47870, 21078 Dijon, France
2 School of Mathematical Sciences, Beijing Normal University, Beijing 100875, Chine
@article{CRMATH_2005__341_7_445_0,
     author = {Shizan Fang and Jinghai Shao},
     title = {Distance riemannienne, th\'eor\`eme de {Rademacher} et in\'egalit\'e de transport sur le groupe des lacets},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {445--450},
     publisher = {Elsevier},
     volume = {341},
     number = {7},
     year = {2005},
     doi = {10.1016/j.crma.2005.08.004},
     language = {fr},
}
TY  - JOUR
AU  - Shizan Fang
AU  - Jinghai Shao
TI  - Distance riemannienne, théorème de Rademacher et inégalité de transport sur le groupe des lacets
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 445
EP  - 450
VL  - 341
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2005.08.004
LA  - fr
ID  - CRMATH_2005__341_7_445_0
ER  - 
%0 Journal Article
%A Shizan Fang
%A Jinghai Shao
%T Distance riemannienne, théorème de Rademacher et inégalité de transport sur le groupe des lacets
%J Comptes Rendus. Mathématique
%D 2005
%P 445-450
%V 341
%N 7
%I Elsevier
%R 10.1016/j.crma.2005.08.004
%G fr
%F CRMATH_2005__341_7_445_0
Shizan Fang; Jinghai Shao. Distance riemannienne, théorème de Rademacher et inégalité de transport sur le groupe des lacets. Comptes Rendus. Mathématique, Volume 341 (2005) no. 7, pp. 445-450. doi : 10.1016/j.crma.2005.08.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.08.004/

[1] S. Aida Sobolev spaces over loop groups, J. Funct. Anal., Volume 127 (1995), pp. 155-172

[2] S. Bobkov; I. Gentil; M. Ledoux Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pure Appl., Volume 80 (2001), pp. 669-696

[3] H. Djellout; A. Guilin; L. Wu Transportation cost-information inequalities for random dynamical system and diffusions, Ann. Probab., Volume 32 (2004), pp. 2702-2732

[4] B. Driver Integration by parts and quasi-invariance for heat measures on loop groups, J. Funct. Anal., Volume 149 (1997), pp. 470-547

[5] B. Driver; T. Lohrentz Logarithmic Sobolev inequalities for pinned loop groups, J. Funct. Anal., Volume 140 (1996), pp. 381-448

[6] B. Driver; V.K. Srimurthy Absolute continuity of heat kernel measure with pinned Wiener measure on loop groups, Ann. Probab., Volume 29 (2001), pp. 691-723

[7] O. Enchev; D. Stroock Rademacher's theorem for Wiener functionals, Ann. Probab., Volume 23 (1993), pp. 25-33

[8] S. Fang Integration by parts for heat measures over loop groups, J. Math. Pures Appl., Volume 78 (1999), pp. 877-894

[9] S. Fang; J. Franchi De Rham–Hodge–Kodaira operator on loop groups, J. Funct. Anal., Volume 148 (1997), pp. 391-407

[10] S. Fang; J. Shao Transportation cost inequalities on path and loop groups, J. Funct. Anal., Volume 218 (2005), pp. 293-317

[11] S. Fang; T. Zhang Large deviations for the Brownian motion on loop groups, J. Theoret. Probab., Volume 14 (2001), pp. 463-483

[12] D. Feyel; A.S. Üstünel Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space, Probab. Theory Related Fields, Volume 128 (2004), pp. 347-385

[13] I. Gentil, Inégalités de Sobolev logarithmiques et hypercontractivité en mécanique statistique et en EDP, Thèse de Doctorat de l'Université Paul Sabatier, Toulouse, 2001

[14] L. Gross Logarithmic Sobolev inequalities on loop groups, J. Funct. Anal., Volume 102 (1991), pp. 268-313

[15] M. Hino; J.A. Ramirez Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab., Volume 31 (2003), pp. 1254-1295

[16] M. Ledoux, Concentration, Transportation and Functional Inequalities. Instructional Conference on Combinatorial Aspects of Math. Analysis, Edinburgh, 25 March – 5 April, 2002

[17] P. Malliavin Hypoellipticity in infinite dimension (M. Pinsky, ed.), Diffusion Processes and Related Problem in Analysis, Birkhäuser, Boston, 1991, pp. 17-33

[18] M.P. Malliavin; P. Malliavin Integration on loop groups, I. Quasi-invariant measures, J. Funct. Anal., Volume 93 (1990), pp. 207-237

[19] F. Otto; C. Villani Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000), pp. 361-400

[20] J. Shao, Hamilton–Jacobi semi-groups in infinite dimensional spaces. Prépublication de l'Université de Bourgogne, Février 2005

[21] F.Y. Wang Probability distance inequalities on Riemannian manifolds and path spaces, J. Funct. Anal., Volume 206 (2004), pp. 167-190

Cité par Sources :

Commentaires - Politique