Dans cette Note, nous allons considérer la distance riemannienne sur le groupe des lacets, qui sera identifie à celle introduite par Hino et Ramirez [M. Hino, J.A. Ramirez, Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab. 31 (2003) 1254–1295]. Une inégalité de transport est établie.
In this Note, we shall consider the Riemannian distance on loop groups, which will be identified to one introduced by Hino and Ramirez [M. Hino, J.A. Ramirez, Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab. 31 (2003) 1254–1295]. A transportation cost inequality is established.
Accepté le :
Publié le :
Shizan Fang 1 ; Jinghai Shao 1, 2
@article{CRMATH_2005__341_7_445_0, author = {Shizan Fang and Jinghai Shao}, title = {Distance riemannienne, th\'eor\`eme de {Rademacher} et in\'egalit\'e de transport sur le groupe des lacets}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--450}, publisher = {Elsevier}, volume = {341}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.08.004}, language = {fr}, }
TY - JOUR AU - Shizan Fang AU - Jinghai Shao TI - Distance riemannienne, théorème de Rademacher et inégalité de transport sur le groupe des lacets JO - Comptes Rendus. Mathématique PY - 2005 SP - 445 EP - 450 VL - 341 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2005.08.004 LA - fr ID - CRMATH_2005__341_7_445_0 ER -
Shizan Fang; Jinghai Shao. Distance riemannienne, théorème de Rademacher et inégalité de transport sur le groupe des lacets. Comptes Rendus. Mathématique, Volume 341 (2005) no. 7, pp. 445-450. doi : 10.1016/j.crma.2005.08.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.08.004/
[1] Sobolev spaces over loop groups, J. Funct. Anal., Volume 127 (1995), pp. 155-172
[2] Hypercontractivity of Hamilton–Jacobi equations, J. Math. Pure Appl., Volume 80 (2001), pp. 669-696
[3] Transportation cost-information inequalities for random dynamical system and diffusions, Ann. Probab., Volume 32 (2004), pp. 2702-2732
[4] Integration by parts and quasi-invariance for heat measures on loop groups, J. Funct. Anal., Volume 149 (1997), pp. 470-547
[5] Logarithmic Sobolev inequalities for pinned loop groups, J. Funct. Anal., Volume 140 (1996), pp. 381-448
[6] Absolute continuity of heat kernel measure with pinned Wiener measure on loop groups, Ann. Probab., Volume 29 (2001), pp. 691-723
[7] Rademacher's theorem for Wiener functionals, Ann. Probab., Volume 23 (1993), pp. 25-33
[8] Integration by parts for heat measures over loop groups, J. Math. Pures Appl., Volume 78 (1999), pp. 877-894
[9] De Rham–Hodge–Kodaira operator on loop groups, J. Funct. Anal., Volume 148 (1997), pp. 391-407
[10] Transportation cost inequalities on path and loop groups, J. Funct. Anal., Volume 218 (2005), pp. 293-317
[11] Large deviations for the Brownian motion on loop groups, J. Theoret. Probab., Volume 14 (2001), pp. 463-483
[12] Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space, Probab. Theory Related Fields, Volume 128 (2004), pp. 347-385
[13] I. Gentil, Inégalités de Sobolev logarithmiques et hypercontractivité en mécanique statistique et en EDP, Thèse de Doctorat de l'Université Paul Sabatier, Toulouse, 2001
[14] Logarithmic Sobolev inequalities on loop groups, J. Funct. Anal., Volume 102 (1991), pp. 268-313
[15] Small-time Gaussian behavior of symmetric diffusion semigroups, Ann. Probab., Volume 31 (2003), pp. 1254-1295
[16] M. Ledoux, Concentration, Transportation and Functional Inequalities. Instructional Conference on Combinatorial Aspects of Math. Analysis, Edinburgh, 25 March – 5 April, 2002
[17] Hypoellipticity in infinite dimension (M. Pinsky, ed.), Diffusion Processes and Related Problem in Analysis, Birkhäuser, Boston, 1991, pp. 17-33
[18] Integration on loop groups, I. Quasi-invariant measures, J. Funct. Anal., Volume 93 (1990), pp. 207-237
[19] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., Volume 173 (2000), pp. 361-400
[20] J. Shao, Hamilton–Jacobi semi-groups in infinite dimensional spaces. Prépublication de l'Université de Bourgogne, Février 2005
[21] Probability distance inequalities on Riemannian manifolds and path spaces, J. Funct. Anal., Volume 206 (2004), pp. 167-190
Cité par Sources :
Commentaires - Politique