We obtain lower asymptotic at ∞ estimates of the distance between a maximum modulus point and zero set of an entire function provided that the function is of regular growth with respect to a proximate order. The more regular the growth is the better the estimates are, and they are sharp in some sense. The case of infinite order is also considered; in this case a suitable analogue of usual proximate order is exploited.
Nous obtenons des estimations inférieure asymptotiques à l'infini de la distance entre un point de module maximal et l'ensemble des zéros d'une fonction entière, quand la fonction est supposée de croissance régulière par rapport à un ordre précisé. Les estimations s'améliorent avec la régularité, et dans un sens elles sont précises. Le cas d'ordre infini est aussi consideré ; dans ce cas nous avons utilisé une analogie appropriée de l'ordre précisé habituel.
Accepted:
Published online:
Iossif Ostrovskii 1, 2; Ersin Üreyen 1
@article{CRMATH_2005__341_8_481_0, author = {Iossif Ostrovskii and Ersin \"Ureyen}, title = {Maximum modulus points and zero sets of entire functions of regular growth}, journal = {Comptes Rendus. Math\'ematique}, pages = {481--484}, publisher = {Elsevier}, volume = {341}, number = {8}, year = {2005}, doi = {10.1016/j.crma.2005.09.012}, language = {en}, }
Iossif Ostrovskii; Ersin Üreyen. Maximum modulus points and zero sets of entire functions of regular growth. Comptes Rendus. Mathématique, Volume 341 (2005) no. 8, pp. 481-484. doi : 10.1016/j.crma.2005.09.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.09.012/
[1] On integral functions having prescribed asymptotic growth. II, Canad. J. Math., Volume 20 (1968), pp. 7-20
[2] Smooth majorants for functions of arbitrarily rapid growth, Math. Proc. Cambridge Philos. Soc., Volume 109 (1991), pp. 565-569
[3] Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, RI, 1980
[4] Wiman's method and “flat regions” of integral functions, Quart. J. Math., Volume 9 (1938), pp. 81-88
[5] Distance between a maximum modulus point and zero set of an entire function, Complex Variables, Volume 48 (2003), pp. 583-598
Cited by Sources:
Comments - Policy