We give a description of the connected graded algebras which are finitely generated and presented of global dimension 2 or 3 and which are Gorenstein. These algebras are constructed from multilinear forms. We generalize the construction by associating homogeneous algebras to multilinear forms. The homogeneous algebras which are Koszul of finite global dimension and which are Gorenstein of this type.
Nous donnons une description des algèbres graduées connexes de présentation finie et de dimension globale 2 ou 3 qui sont Gorenstein. Ces algèbres sont construites à partir de formes multilinéaires. Cette construction est généralisée en associant des algèbres homogènes aux formes multilinéaires. Sont de ce type les algèbres homogènes Koszul–Gorenstein de dimension globale finie.
Accepted:
Published online:
Michel Dubois-Violette 1
@article{CRMATH_2005__341_12_719_0, author = {Michel Dubois-Violette}, title = {Graded algebras and multilinear forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {719--724}, publisher = {Elsevier}, volume = {341}, number = {12}, year = {2005}, doi = {10.1016/j.crma.2005.10.017}, language = {en}, }
Michel Dubois-Violette. Graded algebras and multilinear forms. Comptes Rendus. Mathématique, Volume 341 (2005) no. 12, pp. 719-724. doi : 10.1016/j.crma.2005.10.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.017/
[1] Graded algebras of global dimension 3, Adv. Math., Volume 66 (1987), pp. 171-216
[2] Modules over regular algebras of dimension 3, Invent. Math., Volume 106 (1991), pp. 335-388
[3] Koszulity for nonquadratic algebras, J. Algebra, Volume 239 (2001), pp. 705-734
[4] Homogeneous algebras, J. Algebra, Volume 261 (2003), pp. 172-185
[5] Koszul and Gorenstein properties for homogeneous algebras | arXiv
[6] Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples, Comm. Math. Phys., Volume 230 (2002), pp. 539-579
[7] Yang–Mills algebra, Lett. Math. Phys., Volume 61 (2002), pp. 149-158
[8] Moduli space and structure of noncommutative 3-spheres, Lett. Math. Phys., Volume 66 (2003), pp. 91-121
[9] Yang–Mills and some related algebras | arXiv
[10] The quantum group of a non-degenerated bilinear form, Phys. Lett. B, Volume 245 (1990), pp. 175-177
[11] Homogeneous algebras, statistics and combinatorics, Lett. Math. Phys., Volume 61 (2002), pp. 159-170
[12] Prime ideals of Ore extensions, J. Algebra, Volume 58 (1979), pp. 399-423
Cited by Sources:
Comments - Policy