[A rudimentary Markovian model of atomic diffusion]
We introduce and study an interacting particle system. The evolution is Markovian. The elementary step of the dynamics is the following: one point is randomly chosen in the ambient space, the nearest particle moves to that point. We investigate in particular equilibrium properties of the system.
Nous introduisons et étudions un système de particules en interaction qui évolue suivant une dynamique markovienne dont le pas élémentaire est le suivant : un point de l'espace ambiant est choisi de manière uniforme, la particule la plus proche s'y déplace. Nous nous intéressons en particulier aux propriétés d'équilibre de ce système.
Accepted:
Published online:
Jean-Baptiste Gouéré 1
@article{CRMATH_2006__342_2_141_0, author = {Jean-Baptiste Gou\'er\'e}, title = {Sur un mod\`ele markovien rudimentaire de diffusion atomique}, journal = {Comptes Rendus. Math\'ematique}, pages = {141--146}, publisher = {Elsevier}, volume = {342}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2005.10.027}, language = {fr}, }
Jean-Baptiste Gouéré. Sur un modèle markovien rudimentaire de diffusion atomique. Comptes Rendus. Mathématique, Volume 342 (2006) no. 2, pp. 141-146. doi : 10.1016/j.crma.2005.10.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.027/
[1] Hammersley's interacting particle process and longest increasing subsequences, Probab. Theory Related Fields, Volume 103 (1995) no. 2, pp. 199-213
[2] E.D. Andjel and H. Guiol, Long range exclusion processes, generator and invariant measures, Ann. Probab. (2004), in press
[3] Elements of Queueing Theory, Appl. Math., vol. 26, Springer-Verlag, Berlin, 2003
[4] Un résultat pour le processus d'exclusion à longue portée, Ann. Inst. H. Poincaré Probab. Statist., Volume 33 (1997) no. 4, pp. 387-405
[5] About the long range exclusion process, Markov Process. Related Fields, Volume 10 (2004) no. 3, pp. 457-476
[6] A few seedlings of research, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. I: Theory of Statistics, Univ. California Berkeley, CA, 1970/1971, Univ. California Press, Berkeley, CA, 1972
[7] Aluminium diffusion in decagonal quasicrystals, Phys. Rev. Lett., Volume 93 (2004)
[8] Self-diffusion in random-tiling quasicrystals, Phys. Rev. Lett., Volume 73 (1994) no. 18, p. 2464
[9] A mechanism for self-diffusion in quasi-crystals, Europhys. Lett., Volume 21 (1993), p. 921
[10] Long range exclusion processes, Ann. Probab., Volume 8 (1980) no. 5, pp. 861-889
[11] École d'Été de Probabilités de Saint-Flour, VI—1976, Lecture Notes in Math., vol. 598, Springer-Verlag, Berlin, 1977, pp. 249-445
[12] A microscopic model for the Burgers equation and longest increasing subsequences, Electron. J. Probab., Volume 1 (1996) no. 5, p. 51
[13] Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953
[14] Interaction of Markov processes, Adv. Math., Volume 5 (1970), pp. 246-290
Cited by Sources:
Comments - Policy