A systematic derivations of self-averaging scaling limits of parabolic waves in terms of the Wigner distribution function is presented. The convergence of the Wigner distribution to one of the six deterministic radiative transfer equations is established. One of the main contributions of this Note is a unified framework for space–time scaling limits that lead to radiative transfer.
On présente une méthode systématique de déduction des limites normalisatrices statistiquement stables d'ondes paraboliques en termes de la distribution de Wigner. On démontre la convergence de la distribution de Wigner vers une équation de transfert radiatif, parmi les six possibles. Une des principales contributions de cette Note réside dans un cadre unifié pour les limites normalisées en espace–temps menant au transfert radiatif.
Accepted:
Published online:
Albert C. Fannjiang 1
@article{CRMATH_2006__342_2_109_0, author = {Albert C. Fannjiang}, title = {Self-averaging radiative transfer for parabolic waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {109--114}, publisher = {Elsevier}, volume = {342}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2005.11.006}, language = {en}, }
Albert C. Fannjiang. Self-averaging radiative transfer for parabolic waves. Comptes Rendus. Mathématique, Volume 342 (2006) no. 2, pp. 109-114. doi : 10.1016/j.crma.2005.11.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.006/
[1] Stochastic Dynamics, 2 (2002), pp. 507-531
[2] Asymptotic Anal., 29 (2002), pp. 157-182
[3] J. Acoust. Soc. Amer., 111 (2002), p. 230
[4] Stochastic Anal. Appl., 2 (1984), pp. 369-422
[5] Comm. Pure Appl. Math., 53 (2000), pp. 667-735
[6] Comm. Math. Phys., 254 (2005) no. 2, pp. 289-322
[7] Arch. Rational Mech. Anal., 175 (2005) no. 3, pp. 343-387
[8] arXiv
|[9] Rep. Progr. Phys., 63 (2000), pp. 1933-1995
[10] Comm. Pure Appl. Math., L (1997), pp. 323-379
[11] Decoherence and the Appearance of a Classical World in Quantum Theory, Springer-Verlag, New York, 2003
[12] Approximation and Weak Convergence Methods for Random Processes, with Applications to Stochastic Systems Theory, The MIT Press, Cambridge, MA, 1984
[13] Rev. Mat. Iberoamericana, 9 (1993), pp. 553-618
[14] Math. Pure Appl., 82 (2003), pp. 711-748
[15] J. Statist Phys., 17 (1977), pp. 385-412
[16] L. Tartar, Cours Peccot, College de France, 1977–1978
Cited by Sources:
Comments - Politique