We study uniformly elliptic fully nonlinear equations of the type . We
- – show that convex positively 1-homogeneous operators possess two principal eigenvalues and eigenfunctions, and study these objects;
- – obtain existence and uniqueness results for non-proper operators whose principal eigenvalues (in some cases, only one of them) are positive;
- – obtain an existence result for non-proper Isaac's equations.
On étudie des équations complètement non-linéaires, uniformément elliptiques, du type . On
- – montre que les opérateurs convexes et positivement homogènes de degré 1 possèdent deux valeurs propres et deux fonctions propres principales. On étudie les propriétés de ces objets ;
- – obtient des résultats d'existence et d'unicité pour des équations qui ne sont pas « propres », mais dont les valeurs propres (l'une ou les deux) sont positives ;
- – obtient un résultat d'existence pour une équation de Isaac.
Accepted:
Published online:
Alexander Quaas 1; Boyan Sirakov 2, 3
@article{CRMATH_2006__342_2_115_0, author = {Alexander Quaas and Boyan Sirakov}, title = {On the principal eigenvalues and the {Dirichlet} problem for fully nonlinear operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--118}, publisher = {Elsevier}, volume = {342}, number = {2}, year = {2006}, doi = {10.1016/j.crma.2005.11.003}, language = {en}, }
TY - JOUR AU - Alexander Quaas AU - Boyan Sirakov TI - On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators JO - Comptes Rendus. Mathématique PY - 2006 SP - 115 EP - 118 VL - 342 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2005.11.003 LA - en ID - CRMATH_2006__342_2_115_0 ER -
Alexander Quaas; Boyan Sirakov. On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators. Comptes Rendus. Mathématique, Volume 342 (2006) no. 2, pp. 115-118. doi : 10.1016/j.crma.2005.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.11.003/
[1] On some nonlinear Sturm–Liouville problems, J. Differential Equations, Volume 26 (1977), pp. 375-390
[2] The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math., Volume 47 (1994) no. 1, pp. 47-92
[3] Nonlinear eigenvalues and bifurcation problems for Pucci's operator, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005) no. 2, pp. 187-206
[4] On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., Volume 49 (1996), pp. 365-397
[5] Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations, Electronic J. Differential Equations, Volume 24 (1999), pp. 1-20
[6] Positive solutions to ‘semilinear’ equation involving the Pucci's operator, J. Differential Equations, Volume 199 (2004) no. 2, pp. 376-393
[7] Uniqueness and existence of maximal and minimal solutions of fully nonlinear PDE, Comm. Pure Appl. Anal., Volume 4 (2005) no. 1, pp. 187-195
[8] Bifurcation and optimal stochastic control, Nonlinear Anal., Volume 7 (1983) no. 2, pp. 177-207
[9] Existence of positive solutions to a ‘semilinear’ equation involving the Pucci's operator in a convex domain, Differential Integral Equations, Volume 17 (2004), pp. 481-494
[10] A. Quaas, B. Sirakov, The principal eigenvalue and Dirichlet problem for fully nonlinear operators, in press
Cited by Sources:
⁎ Supported by FONDECYT, Grant No. 1040794, and ECOS grant C02E08.
Comments - Policy