[A Liouville theorem for Schrödinger operator with drift]
Let be a complete Riemannian manifold without boundary of dimension n and V be a vector field on M such that is bounded. Suppose that outside a compact set of M, where denotes the upper eigenvalue of ∇V and are non-negative decreasing functions such that . There exists positive numbers and which depend only on n and such that if h is a function defined on M with and , where , where is a sequence of M such that , then the equation has no positive solution on M.
Soit une variété riemanniene complète sans bord de dimension n. Soit V un champ de vecteurs de classe sur M tel que soit borné. On suppose qu'en dehors d'un compact de M on a , où est la plus grande valeur propre de ∇V et sont des fonctions décroissantes non négatives avec . Il existe des constantes positives et dépendant seulement de n et tels que si h est une fonction de classe sur M vérifiant et où pour une suite de points de M vérifiant , alors l'équation n'admet pas de solution positive de classe sur M.
Accepted:
Published online:
Saïd Asserda 1
@article{CRMATH_2006__342_6_393_0, author = {Sa{\"\i}d Asserda}, title = {Un th\'eor\`eme de {Liouville} pour l'op\'erateur de {Schr\"odinger} avec d\'erive}, journal = {Comptes Rendus. Math\'ematique}, pages = {393--398}, publisher = {Elsevier}, volume = {342}, number = {6}, year = {2006}, doi = {10.1016/j.crma.2006.01.007}, language = {fr}, }
Saïd Asserda. Un théorème de Liouville pour l'opérateur de Schrödinger avec dérive. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 393-398. doi : 10.1016/j.crma.2006.01.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.007/
[1] An extention of E. Hopf's maximum principle with application to Riemannian geometry, Duke Math. J., Volume 25 (1958), pp. 45-56
[2] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., Volume 28 (1975) no. 3, pp. 333-354
[3] L2 vanishing theorems in positive curvature, Indiana Univ. Math. J., Volume 42 (1993) no. 4, pp. 1545-1554
[4] Gradient estimates for the positive solutions of the Laplacian with drift, Proc. Amer. Math. Soc., Volume 127 (1999) no. 2, pp. 619-625
[5] Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal., Volume 199 (1991), pp. 233-256
[6] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201
[7] A Liouville type theorem for the Schrödinger operator, Proc. Amer. Math. Soc., Volume 127 (1999) no. 11, pp. 3353-3359
[8] Gradient estimates and a Liouville type theorem for the Schrödinger operator, J. Func. Anal., Volume 127 (1995), pp. 198-203
[9] Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., Volume 28 (1975), pp. 201-228
Cited by Sources:
Comments - Policy