Comptes Rendus
Mathematical Analysis
D-modules on the complex projective space CPn1 associated to a quadric
Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 387-392.

We give a combinatorial description of regular holonomic systems on the complex projective space CPn1 with characteristic variety the union of the zero section and the conormal bundle of a smooth quadric (equivalently: those that admit an infinitesimal action of PO(n)).

Nous donnons une description combinatoire des systèmes holonômes réguliers sur l'espace projectif complexe CPn1 dont la variété caractérisque est réunion de la section nulle et d'une quadrique lisse (de façon équivalente : ceux qui admettent une action infinitésimale de PO(n)).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2006.01.012

Philibert Nang 1

1 Mathematics Section, ICTP, strada costiera 11, 34014 Trieste, Italy
@article{CRMATH_2006__342_6_387_0,
     author = {Philibert Nang},
     title = {$ \mathcal{D}$-modules on the complex projective space $ {\mathbb{CP}}^{n-1}$ associated to a quadric},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {387--392},
     publisher = {Elsevier},
     volume = {342},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crma.2006.01.012},
     language = {en},
}
TY  - JOUR
AU  - Philibert Nang
TI  - $ \mathcal{D}$-modules on the complex projective space $ {\mathbb{CP}}^{n-1}$ associated to a quadric
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 387
EP  - 392
VL  - 342
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crma.2006.01.012
LA  - en
ID  - CRMATH_2006__342_6_387_0
ER  - 
%0 Journal Article
%A Philibert Nang
%T $ \mathcal{D}$-modules on the complex projective space $ {\mathbb{CP}}^{n-1}$ associated to a quadric
%J Comptes Rendus. Mathématique
%D 2006
%P 387-392
%V 342
%N 6
%I Elsevier
%R 10.1016/j.crma.2006.01.012
%G en
%F CRMATH_2006__342_6_387_0
Philibert Nang. $ \mathcal{D}$-modules on the complex projective space $ {\mathbb{CP}}^{n-1}$ associated to a quadric. Comptes Rendus. Mathématique, Volume 342 (2006) no. 6, pp. 387-392. doi : 10.1016/j.crma.2006.01.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.01.012/

[1] L. Boutet de Monvel D-modules holonômes réguliers en une variable, Mathématiques et Physique, Séminaire de L'ENS 1979–1982, Progr. Math., vol. 37, 1983, pp. 313-321

[2] L. Boutet de Monvel Revue sur le théorie des D-modules et modèles d'opérateurs pseudodifférentiels, Math. Phys. Stud., vol. 12, Kluwer Acad. Publ., 1991, pp. 1-31

[3] P. Deligne, Letter to R. MacPherson, 1981

[4] P. Deligne Le formalisme des cycles évanescents, Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Math., vol. 340, 1973, pp. 82-115

[5] P. Deligne Comparaison avec la théorie transcendante, Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Math., vol. 340, 1973, pp. 116-164

[6] M. Kashiwara On the maximal overdetermined systems of linear partial differential equations I, Publ. Res. Inst. Math. Sci., Volume 10 (1974), pp. 563-579

[7] M. Kashiwara On holonomic systems of linear partial differential equations II, Invent. Math., Volume 49 (1978), pp. 121-135

[8] M. Kashiwara; T. Kawai On holonomic systems of Microdifferential Equations III: Systems with regular singularities, Publ. Res. Inst. Math. Sci., Volume 17 (1981), pp. 813-979

[9] R. Macpherson; K. Vilonen Elementary construction of perverse sheaves, Invent. Math., Volume 84 (1986), pp. 403-435

[10] B. Malgrange Connexions méromorphes, London Math. Soc. Lecture Note Ser., Volume 201 (1994), pp. 251-261

[11] P. Nang D-modules associated to the group of similitudes, Publ. Res. Inst. Math. Sci., Volume 35 (1999) no. 2, pp. 223-247

[12] J.P. Serre Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble), Volume 6 (1955), pp. 1-42

Cited by Sources:

Supported by the ICTP Research Fellowship.

Comments - Policy