[Compactification de bouts hyperconcaves]
On étudie une classe de variétés dont les bouts strictement pseudoconcaves peuvent être compactifiés, même en dimension deux.
We find a class of manifolds whose ‘pseudoconcave holes’ can be filled in, even in dimension two.
Accepté le :
Publié le :
George Marinescu 1, 2 ; Tien-Cuong Dinh 3
@article{CRMATH_2006__342_9_675_0, author = {George Marinescu and Tien-Cuong Dinh}, title = {On the compactification of hyperconcave ends}, journal = {Comptes Rendus. Math\'ematique}, pages = {675--680}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.02.038}, language = {en}, }
George Marinescu; Tien-Cuong Dinh. On the compactification of hyperconcave ends. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 675-680. doi : 10.1016/j.crma.2006.02.038. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.038/
[1] Projective embeddings of pseudoconcave spaces, Ann. Sc. Norm. Sup. Pisa, Volume 24 (1970), pp. 231-278
[2] Some remarks on pseudoconcave manifolds (A. Haeflinger; R. Narasimhan, eds.), Essays on Topology and Related Topics dedicated to G. de Rham, Springer-Verlag, 1970, pp. 85-104
[3] B. Berndtsson, A simple proof of an -estimate for on complete Kähler manifolds, Preprint, 1992
[4] Strongly plurisubharmonic exhaustion functions on 1-convex spaces, Math. Ann., Volume 270 (1985), pp. 63-68
[5] vanishing theorems for positive line bundles and adjunction theory, Transcendental Methods in Algebraic Geometry, Cetraro, 1994, Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 1-97
[6] Chaînes holomorphes à bord donné dans , Bull. Soc. Math. France, Volume 125 (1997), pp. 383-445
[7] The Neumann Problem for the Cauchy–Riemann Complex, Ann. Math. Stud., vol. 75, Princeton University Press, New York, 1972
[8] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368
[9] Theory of q-convexity and q-concavity (H. Grauert; Th. Peternell; R. Remmert, eds.), Several Complex Variables VII, Encyclopedia Math. Sci., vol. 74, Springer-Verlag, 1994
[10] -estimates and existence theorem for the -operator, Acta Math., Volume 113 (1965), pp. 89-152
[11] On the compactification of hyperconcave ends and the theorems of Siu–Yau and Nadel, 2002 (Invent. Math., in press. Preprint available at) | arXiv
[12] Embeddability of some strongly pseudoconvex CR manifolds, 2004 (Trans. Amer. Math. Soc., in press. Preprint available at) | arXiv
[13] Compactification of complete Kähler–Einstein manifolds of finite volume, Recent Developments in Geometry, Comtemp. Math., vol. 101, Amer. Math. Soc., 1989, pp. 287-301
[14] On complex manifolds which can be compactified by adding finitely many points, Invent. Math., Volume 101 (1990) no. 1, pp. 173-189
[15] Compactification of complete Kähler manifolds of negative Ricci curvature, J. Differential Geom., Volume 28 (1988) no. 3, pp. 503-512
[16] Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Manifolds (Minneapolis), Springer-Verlag, New York, 1965, pp. 242-256
[17] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi (J. Noguchi et al., eds.), Geometric Complex Analysis, World Scientific Publishing Co., 1996, pp. 577-592
[18] Compactification of negatively curved complete Kähler manifolds of finite volume, Ann. Math. Stud., vol. 102, Princeton University Press, 1982, pp. 363-380
[19] The hull of a curve in , Ann. of Math., Volume 68 (1958), pp. 45-71
Cité par Sources :
Commentaires - Politique