[Compactification de bouts hyperconcaves]
We find a class of manifolds whose ‘pseudoconcave holes’ can be filled in, even in dimension two.
On étudie une classe de variétés dont les bouts strictement pseudoconcaves peuvent être compactifiés, même en dimension deux.
Accepté le :
Publié le :
George Marinescu 1, 2 ; Tien-Cuong Dinh 3
@article{CRMATH_2006__342_9_675_0, author = {George Marinescu and Tien-Cuong Dinh}, title = {On the compactification of hyperconcave ends}, journal = {Comptes Rendus. Math\'ematique}, pages = {675--680}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.02.038}, language = {en}, }
George Marinescu; Tien-Cuong Dinh. On the compactification of hyperconcave ends. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 675-680. doi : 10.1016/j.crma.2006.02.038. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.038/
[1] Projective embeddings of pseudoconcave spaces, Ann. Sc. Norm. Sup. Pisa, Volume 24 (1970), pp. 231-278
[2] Some remarks on pseudoconcave manifolds (A. Haeflinger; R. Narasimhan, eds.), Essays on Topology and Related Topics dedicated to G. de Rham, Springer-Verlag, 1970, pp. 85-104
[3] B. Berndtsson, A simple proof of an
[4] Strongly plurisubharmonic exhaustion functions on 1-convex spaces, Math. Ann., Volume 270 (1985), pp. 63-68
[5]
[6] Chaînes holomorphes à bord donné dans
[7] The Neumann Problem for the Cauchy–Riemann Complex, Ann. Math. Stud., vol. 75, Princeton University Press, New York, 1972
[8] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368
[9] Theory of q-convexity and q-concavity (H. Grauert; Th. Peternell; R. Remmert, eds.), Several Complex Variables VII, Encyclopedia Math. Sci., vol. 74, Springer-Verlag, 1994
[10]
[11] On the compactification of hyperconcave ends and the theorems of Siu–Yau and Nadel, 2002 (Invent. Math., in press. Preprint available at) | arXiv
[12] Embeddability of some strongly pseudoconvex CR manifolds, 2004 (Trans. Amer. Math. Soc., in press. Preprint available at) | arXiv
[13] Compactification of complete Kähler–Einstein manifolds of finite volume, Recent Developments in Geometry, Comtemp. Math., vol. 101, Amer. Math. Soc., 1989, pp. 287-301
[14] On complex manifolds which can be compactified by adding finitely many points, Invent. Math., Volume 101 (1990) no. 1, pp. 173-189
[15] Compactification of complete Kähler manifolds of negative Ricci curvature, J. Differential Geom., Volume 28 (1988) no. 3, pp. 503-512
[16] Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Manifolds (Minneapolis), Springer-Verlag, New York, 1965, pp. 242-256
[17] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi (J. Noguchi et al., eds.), Geometric Complex Analysis, World Scientific Publishing Co., 1996, pp. 577-592
[18] Compactification of negatively curved complete Kähler manifolds of finite volume, Ann. Math. Stud., vol. 102, Princeton University Press, 1982, pp. 363-380
[19] The hull of a curve in
Cité par Sources :
Commentaires - Politique