Motivated by the Ginzburg–Landau theory of superconductivity, we estimate the ground state energy of a magnetic Schrödinger operator with de Gennes boundary condition in the semi-classical limit and we study the localization of the corresponding ground states. We exhibit cases when the de Gennes boundary condition has a strong effect on this localization.
Motivé par la théorie de Ginzburg–Landau de supraconductivité, nous estimons dans le régime semi-classique l'énergie de l'état fondamental d'un opérateur de Schrödinger avec champ magnétique et condition au bord de de Gennes. Nous obtenons des cas où la condition au bord de de Gennes a un effet fort sur cette localisation.
Accepted:
Published online:
Ayman Kachmar 1, 2
@article{CRMATH_2006__342_9_701_0, author = {Ayman Kachmar}, title = {On the ground state energy for a magnetic {Schr\"odinger} operator and the effect of the de {Gennes} boundary condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {701--706}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.03.001}, language = {en}, }
TY - JOUR AU - Ayman Kachmar TI - On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary condition JO - Comptes Rendus. Mathématique PY - 2006 SP - 701 EP - 706 VL - 342 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2006.03.001 LA - en ID - CRMATH_2006__342_9_701_0 ER -
Ayman Kachmar. On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary condition. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 701-706. doi : 10.1016/j.crma.2006.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.001/
[1] Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Math. Notes, vol. 29, Princeton University Press, 1982
[2] An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré Phys. Théorique, Volume 58 (1993) no. 2, pp. 243-262
[3] Superconductivity of Metals and Alloys, Benjamin, 1966
[4] Eigenvalues variation I, Neumann problem for Sturm–Liouville operators, J. Differential Equations, Volume 104 (1993) no. 2, pp. 243-262
[5] Surface nucleation and boundary condition in superconductors, Phys. Rev. Lett., Volume 23 (1969) no. 3
[6] On a class of hypoelliptic operators, Mat. Sb. (N.S.), Volume 12 (1970), pp. 458-475
[7] Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680
[8] Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003) no. 1, pp. 145-181
[9] A. Kachmar, Thèse à l'université Paris-Sud, in preparation
[10] Ginzburg–Landau equation with de Gennes boundary condition, J. Differential Equations, Volume 129 (1996) no. 1, pp. 136-165
[11] Estimates of the upper critical field of the Ginzburg–Landau equations of superconductivity, Physica D (1999), pp. 73-104
[12] Superconducting films in perpendicular fields and the effect of the de Gennes parameter, SIAM J. Math. Anal., Volume 34 (2003) no. 4, pp. 957-991
[13] Methods of Modern Mathematical Physics IV, Academic Press, 1979
Cited by Sources:
Comments - Policy