Suppose that M is a CR manifold bounding a compact complex manifold X. The manifold X admits an approximate Kähler–Einstein metric g which makes the interior of X a complete Riemannian manifold. We identify certain residues of the scattering operator as CR-covariant differential operators and obtain the CR Q-curvature of M from the scattering operator as well. Our results are an analogue in CR-geometry of Graham and Zworski's result that certain residues of the scattering operator on a conformally compact manifold with a Poincaré–Einstein metric are natural, conformally covariant differential operators, and the Q-curvature of the conformal infinity can be recovered from the scattering operator.
Soit M une variété CR qui est aussi la frontière d'une variété complexe et compacte X. Il y a une métrique g de type Kähler–Einstein sur X telle que est une variété riemannienne complète. Nous étudions la matrice de diffusion sur et nous montrons que les résidus à certains points sont des opérateurs différentiels CR-covariants. Nous montrons aussi qu'on peut recuperer la courbure CR Q en utilisant la matrice de diffusion. Nos résultats sont les analogues des résultats de Graham–Zworski pour le cas réel et asymptotiquement hyperbolique.
Accepted:
Published online:
Peter D. Hislop 1; Peter A. Perry 1; Siu-Hung Tang 2
@article{CRMATH_2006__342_9_651_0, author = {Peter D. Hislop and Peter A. Perry and Siu-Hung Tang}, title = {CR-invariants and the scattering operator for complex manifolds with {CR-boundary}}, journal = {Comptes Rendus. Math\'ematique}, pages = {651--654}, publisher = {Elsevier}, volume = {342}, number = {9}, year = {2006}, doi = {10.1016/j.crma.2006.03.003}, language = {en}, }
TY - JOUR AU - Peter D. Hislop AU - Peter A. Perry AU - Siu-Hung Tang TI - CR-invariants and the scattering operator for complex manifolds with CR-boundary JO - Comptes Rendus. Mathématique PY - 2006 SP - 651 EP - 654 VL - 342 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2006.03.003 LA - en ID - CRMATH_2006__342_9_651_0 ER -
Peter D. Hislop; Peter A. Perry; Siu-Hung Tang. CR-invariants and the scattering operator for complex manifolds with CR-boundary. Comptes Rendus. Mathématique, Volume 342 (2006) no. 9, pp. 651-654. doi : 10.1016/j.crma.2006.03.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.03.003/
[1] Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 3671-3742
[2] Resolvent of the Laplacian on pseudoconvex domains, Acta Math., Volume 167 (1991), pp. 1-106
[3] Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2), Volume 103 (1976) no. 2, pp. 395-416 Correction Ann. of Math. (2), 104, 2, 1976, pp. 393-394
[4] Ambient metric construction of Q-curvature in conformal and CR-geometries, Math. Res. Lett., Volume 10 (2003), pp. 819-832
[5] C.R. Graham, Private communication
[6] CR-invariant powers of the sub-Laplacian, J. Reine Angew. Math., Volume 583 (2005), pp. 1-27
[7] Conformal invariants, Astérisque (1985) no. Numéro Hors Série, pp. 95-116
[8] Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2), Volume 46 (1992) no. 3, pp. 557-565
[9] Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J., Volume 57 (1988) no. 3, pp. 697-720
[10] Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003) no. 1, pp. 89-118
[11] On boundaries of complex analytic varieties. I, Ann. of Math. (2), Volume 102 (1975) no. 2, pp. 223-290
[12] P.D. Hislop, P.A. Perry, S.-H. Tang, The scattering operator for complex manifolds with boundary, in preparation
[13] A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR-manifolds, Contemp. Math., Volume 27 (1984), pp. 57-63
[14] Boundary behavior of the complex Monge–Ampère equation, Acta Math., Volume 148 (1982), pp. 160-192
[15] Scattering theory for strictly pseudoconvex domains, Differential Equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., vol. 65, Amer. Math. Soc., Providence, RI, 1999, pp. 161-168
[16] Volume renormalization for complete Einstein–Kähler metrics, April 2004 (Preprint, arXiv:) | arXiv
[17] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, in: Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9, Kinokuniya Book-Store Co., Ltd., Tokyo, 1975
[18] Absence of super-exponentially decaying eigenfunctions on Riemannian manifolds with pinched negative curvature, 2004 (Preprint, arXiv:) | arXiv
[19] Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom., Volume 13 (1978) no. 1, pp. 25-41
Cited by Sources:
Comments - Policy