We sketch a proof of the conjecture due to Goncharov and Manin which states that the relative periods of the moduli space of Riemann spheres with n ordered marked points are multiple zeta values.
Nous donnons les grandes lignes d'une démonstration de la conjecture de Goncharov et Manin qui prédit que les périodes relatives des espaces des modules des courbes de genre 0 avec n points marqués sont des valeurs zêtas multiples.
Accepted:
Published online:
Francis C.S. Brown 1
@article{CRMATH_2006__342_12_949_0, author = {Francis C.S. Brown}, title = {P\'eriodes des espaces des modules $ {\overline{\mathfrak{M}}}_{0,n}$ et valeurs z\^etas multiples}, journal = {Comptes Rendus. Math\'ematique}, pages = {949--954}, publisher = {Elsevier}, volume = {342}, number = {12}, year = {2006}, doi = {10.1016/j.crma.2006.04.016}, language = {fr}, }
TY - JOUR AU - Francis C.S. Brown TI - Périodes des espaces des modules $ {\overline{\mathfrak{M}}}_{0,n}$ et valeurs zêtas multiples JO - Comptes Rendus. Mathématique PY - 2006 SP - 949 EP - 954 VL - 342 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2006.04.016 LA - fr ID - CRMATH_2006__342_12_949_0 ER -
Francis C.S. Brown. Périodes des espaces des modules $ {\overline{\mathfrak{M}}}_{0,n}$ et valeurs zêtas multiples. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 949-954. doi : 10.1016/j.crma.2006.04.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.016/
[1] F.C.S. Brown, Périodes des espaces des modules et valeurs zêta multiples, thèse de Doctorat, Univ. de Bordeaux 1, 2006
[2] Polylogarithmes multiples uniformes en une variable, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 527-532
[3] Extension of function algebra by integrals and Malcev completion of , Adv. in Math. (2), Volume 23 (1977), pp. 181-210
[4] The irreducibility of the space of curves of a given genus, Publ. Math. IHES, Volume 36 (1969), pp. 75-109
[5] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with , Leningrad Math. J., Volume 2 (1991) no. 4, pp. 829-860
[6] S. Fischler, Irrationalité de valeurs de zêta [d'après Apéry, Rivoal,...], Séminaire Bourbaki 2002–2003, Exposé 910, 2002
[7] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint, 2001; arXiv: | arXiv
[8] Multiple ζ-motives and moduli spaces , Compositio Math., Volume 140 (2004), pp. 1-14
[9] Classical polylogarithms, Part 2, Proc. Sympos. Pure Math., Volume 55 (1994)
[10] The permutoasssociahedron, MacLane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra, Volume 85 (1993), pp. 119-142
[11] Current algebras and Wess–Zumino models in two dimensions, Nucl. Phys. B, Volume 247 (1984), pp. 83-103
[12] S.A. Zlobin, Properties of coefficients of certain linear forms in generalized polylogarithms, preprint, 2005; arXiv: | arXiv
[13] Selberg integrals and multiple zeta values, Compos. Math, Volume 133 (2002) no. 1, pp. 1-24
[14] Valeurs zêtas multiples : une introduction, J. Théorie des Nombres de Bordeaux, Volume 12 (2002), pp. 581-595
Cited by Sources:
Comments - Policy