[Multiple zeta values and periods of moduli spaces ]
Nous donnons les grandes lignes d'une démonstration de la conjecture de Goncharov et Manin qui prédit que les périodes relatives des espaces des modules des courbes de genre 0 avec n points marqués sont des valeurs zêtas multiples.
We sketch a proof of the conjecture due to Goncharov and Manin which states that the relative periods of the moduli space of Riemann spheres with n ordered marked points are multiple zeta values.
Accepted:
Published online:
Francis C.S. Brown 1
@article{CRMATH_2006__342_12_949_0,
author = {Francis C.S. Brown},
title = {P\'eriodes des espaces des modules $ {\overline{\mathfrak{M}}}_{0,n}$ et valeurs z\^etas multiples},
journal = {Comptes Rendus. Math\'ematique},
pages = {949--954},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {12},
doi = {10.1016/j.crma.2006.04.016},
language = {fr},
}
TY - JOUR
AU - Francis C.S. Brown
TI - Périodes des espaces des modules $ {\overline{\mathfrak{M}}}_{0,n}$ et valeurs zêtas multiples
JO - Comptes Rendus. Mathématique
PY - 2006
SP - 949
EP - 954
VL - 342
IS - 12
PB - Elsevier
DO - 10.1016/j.crma.2006.04.016
LA - fr
ID - CRMATH_2006__342_12_949_0
ER -
Francis C.S. Brown. Périodes des espaces des modules $ {\overline{\mathfrak{M}}}_{0,n}$ et valeurs zêtas multiples. Comptes Rendus. Mathématique, Volume 342 (2006) no. 12, pp. 949-954. doi: 10.1016/j.crma.2006.04.016
[1] F.C.S. Brown, Périodes des espaces des modules et valeurs zêta multiples, thèse de Doctorat, Univ. de Bordeaux 1, 2006
[2] Polylogarithmes multiples uniformes en une variable, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 527-532
[3] Extension of function algebra by integrals and Malcev completion of , Adv. in Math. (2), Volume 23 (1977), pp. 181-210
[4] The irreducibility of the space of curves of a given genus, Publ. Math. IHES, Volume 36 (1969), pp. 75-109
[5] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with , Leningrad Math. J., Volume 2 (1991) no. 4, pp. 829-860
[6] S. Fischler, Irrationalité de valeurs de zêta [d'après Apéry, Rivoal,...], Séminaire Bourbaki 2002–2003, Exposé 910, 2002
[7] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint, 2001; arXiv: | arXiv
[8] Multiple ζ-motives and moduli spaces , Compositio Math., Volume 140 (2004), pp. 1-14
[9] Classical polylogarithms, Part 2, Proc. Sympos. Pure Math., Volume 55 (1994)
[10] The permutoasssociahedron, MacLane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra, Volume 85 (1993), pp. 119-142
[11] Current algebras and Wess–Zumino models in two dimensions, Nucl. Phys. B, Volume 247 (1984), pp. 83-103
[12] S.A. Zlobin, Properties of coefficients of certain linear forms in generalized polylogarithms, preprint, 2005; arXiv: | arXiv
[13] Selberg integrals and multiple zeta values, Compos. Math, Volume 133 (2002) no. 1, pp. 1-24
[14] Valeurs zêtas multiples : une introduction, J. Théorie des Nombres de Bordeaux, Volume 12 (2002), pp. 581-595
Cited by Sources:
Comments - Policy
