[Une construction des catégories tensorielles semi-simples]
Soit
Let
Accepté le :
Publié le :
Friedrich Knop 1
@article{CRMATH_2006__343_1_15_0, author = {Friedrich Knop}, title = {A construction of semisimple tensor categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--18}, publisher = {Elsevier}, volume = {343}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2006.05.009}, language = {en}, }
Friedrich Knop. A construction of semisimple tensor categories. Comptes Rendus. Mathématique, Volume 343 (2006) no. 1, pp. 15-18. doi : 10.1016/j.crma.2006.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.009/
[1] Diagram chasing in Mal'cev categories, J. Pure Appl. Algebra, Volume 69 (1991), pp. 271-284
[2] La catégorie des représentations du groupe symétrique
[3] Determinants on semilattices, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 207-208
[4] Modular elements of geometric lattices, Algebra Universalis, Volume 1 (1971/72), pp. 214-217
[5] Supersolvable lattices, Algebra Universalis, Volume 2 (1972), pp. 197-217
[6] Hadamard determinants, Möbius functions, and the chromatic number of a graph, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 960-964
- The Delannoy category, Duke Mathematical Journal, Volume 173 (2024) no. 16 | DOI:10.1215/00127094-2024-0012
- Deligne Categories and Representations of the Finite General Linear Group, Part 1: Universal Property, Transformation Groups (2024) | DOI:10.1007/s00031-023-09840-1
- Polyadization of Algebraic Structures, Symmetry, Volume 14 (2022) no. 9, p. 1782 | DOI:10.3390/sym14091782
- Random field Ising model and Parisi-Sourlas supersymmetry. Part II. Renormalization group, Journal of High Energy Physics, Volume 2021 (2021) no. 3 | DOI:10.1007/jhep03(2021)219
- Finite-Dimensional Representations of Yangians in Complex Rank, International Mathematics Research Notices, Volume 2020 (2020) no. 20, p. 6967 | DOI:10.1093/imrn/rnz005
- Deligne categories in lattice models and quantum field theory, or making sense of O(N) symmetry with non-integer N, Journal of High Energy Physics, Volume 2020 (2020) no. 4 | DOI:10.1007/jhep04(2020)117
- ON THE PARTITION APPROACH TO SCHUR-WEYL DUALITY AND FREE QUANTUM GROUPS, Transformation Groups, Volume 22 (2017) no. 3, p. 707 | DOI:10.1007/s00031-016-9410-9
- Generators for the representation rings of certain wreath products, Journal of Algebra, Volume 445 (2016), p. 125 | DOI:10.1016/j.jalgebra.2015.09.003
- On representations of rational Cherednik algebras of complex rank, Representation Theory of the American Mathematical Society, Volume 18 (2014) no. 12, p. 361 | DOI:10.1090/s1088-4165-2014-00459-x
- REPRESENTATION THEORY IN COMPLEX RANK, I, Transformation Groups, Volume 19 (2014) no. 2, p. 359 | DOI:10.1007/s00031-014-9260-2
- Categories parametrized by schemes and representation theory in complex rank, Journal of Algebra, Volume 381 (2013), p. 140 | DOI:10.1016/j.jalgebra.2013.01.029
- On representation categories of wreath products in non-integral rank, Advances in Mathematics, Volume 231 (2012) no. 1, p. 1 | DOI:10.1016/j.aim.2012.05.002
- Modified traces on Deligne’s category
, Journal of Algebraic Combinatorics, Volume 36 (2012) no. 4, p. 541 | DOI:10.1007/s10801-012-0349-1 - Tensor envelopes of regular categories, Advances in Mathematics, Volume 214 (2007) no. 2, p. 571 | DOI:10.1016/j.aim.2007.03.001
Cité par 14 documents. Sources : Crossref
Commentaires - Politique