Let ω, Ω be bounded simply connected domains in , and let . In the annular domain we consider the class of complex valued maps having modulus 1 and degree 1 on ∂Ω and ∂ω.
We prove that, when , there exists a finite threshold value of the Ginzburg–Landau parameter κ such that the minimum of the Ginzburg–Landau energy not attained in when while it is attained when .
Soient ω, Ω des ouverts bornés, simplement connexes de , et soit . Dans le domaine annulaire on considère une classe des applications à valeurs complexes ayant le module égal à 1 et le degré 1 sur ∂Ω et ∂ω.
On montre que, si , alors il existe une valeur critique finie du paramètre κ de Ginzburg–Landau, telle que le minimum de l'énergie de Ginzburg–Landau n'est pas atteint dans pour , tandis qu'il est attaint pour .
Accepted:
Published online:
Leonid Berlyand 1; Dmitry Golovaty 2; Volodymyr Rybalko 3
@article{CRMATH_2006__343_1_63_0, author = {Leonid Berlyand and Dmitry Golovaty and Volodymyr Rybalko}, title = {Nonexistence of {Ginzburg{\textendash}Landau} minimizers with prescribed degree on the boundary of a doubly connected domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--68}, publisher = {Elsevier}, volume = {343}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2006.05.013}, language = {en}, }
TY - JOUR AU - Leonid Berlyand AU - Dmitry Golovaty AU - Volodymyr Rybalko TI - Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain JO - Comptes Rendus. Mathématique PY - 2006 SP - 63 EP - 68 VL - 343 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2006.05.013 LA - en ID - CRMATH_2006__343_1_63_0 ER -
%0 Journal Article %A Leonid Berlyand %A Dmitry Golovaty %A Volodymyr Rybalko %T Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain %J Comptes Rendus. Mathématique %D 2006 %P 63-68 %V 343 %N 1 %I Elsevier %R 10.1016/j.crma.2006.05.013 %G en %F CRMATH_2006__343_1_63_0
Leonid Berlyand; Dmitry Golovaty; Volodymyr Rybalko. Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain. Comptes Rendus. Mathématique, Volume 343 (2006) no. 1, pp. 63-68. doi : 10.1016/j.crma.2006.05.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.013/
[1] Complex Analysis, McGraw-Hill, 1966
[2] Vortices and pinning effects for the Ginzburg–Landau model in multiply connected domains, Comm. Pure Appl. Math., Volume 59 (2006) no. 1, pp. 36-70
[3] Capacity of a multiply-connected domain and nonexistence of Ginzburg–Landau minimizers with prescribed degrees on the boundary, 2006 http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:math/0601018 (Preprint available at) | arXiv
[4] Ginzburg–Landau minimizers in perforated domains with prescribed degrees http://desargues.univ-lyon1.fr (Preprint available at)
[5] Ginzburg–Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices, J. Funct. Anal. (2006) | DOI
[6] Ginzburg–Landau minimizers with prescribed degrees: dependence on domain, C. R. Math. Acad. Sci. Paris, Volume 337 (2003), pp. 375-380
[7] Symmetry breaking in annular domains for a Ginzburg–Landau superconductivity model, Proceedings of IUTAM 99/4 Symposium, Sydney, Australia, Kluwer Academic Publishers, 1999, pp. 189-210
[8] Ginzburg–Landau Vortices, Birkhäuser, 2004
[9] On uniqueness of vector-valued minimizers of the Ginzburg–Landau functional in annular domains, Calc. Var. Partial Differential Equations, Volume 14 (2002) no. 2, pp. 213-232
[10] Ginzburg–Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal., Volume 27 (1996) no. 5, pp. 1360-1385
[11] Homotopy classification of minimizers of the Ginzburg–Landau energy and the existence of permanent currents, Comm. Math. Phys., Volume 179 (1996) no. 1, pp. 257-263
Cited by Sources:
Comments - Policy