We consider the nonlinear dynamic von Kármán model for a thin plate surrounded by a thin layer of thickness δ. We apply the formal asymptotic expansions method to establish approximate boundary conditions that model the effect of the thin layer.
On considère le modèle dynamique non linéaire de von Kármán pour une plaque mince recouverte d'une fine couche élastique d'épaisseur δ. On applique la méthode des développements asymptotiques formelle pour établir des conditions aux limites approchées modélisant l'effet de la couche mince sur la plaque.
Accepted:
Published online:
Leila Rahmani 1
@article{CRMATH_2006__343_1_57_0, author = {Leila Rahmani}, title = {Conditions aux limites approch\'ees pour une plaque mince non lin\'eaire}, journal = {Comptes Rendus. Math\'ematique}, pages = {57--62}, publisher = {Elsevier}, volume = {343}, number = {1}, year = {2006}, doi = {10.1016/j.crma.2006.04.013}, language = {fr}, }
Leila Rahmani. Conditions aux limites approchées pour une plaque mince non linéaire. Comptes Rendus. Mathématique, Volume 343 (2006) no. 1, pp. 57-62. doi : 10.1016/j.crma.2006.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.04.013/
[1] Approximate boundary conditions for thin periodic coatings, Mathematical and Numerical Aspects of Wave Propagation (Golden, CO, 1998), SIAM, Philadelphia, PA, 1998, pp. 297-301
[2] The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation, SIAM J. Appl. Math., Volume 56 (1996) no. 6, pp. 1664-1693
[3] Mathematical Elasticity, vol. II: Theory of Plates, North-Holland, 1997
[4] B. Engquist, J.-C. Nédéléc, Effective boundary conditions for acoustic and electromagnetic scattering in thin layers, Rapport interne 278, CMAP, école polytechnique, Palaiseau, France, 1993
[5] Effective boundary conditions for thin ferromagnetic coatings. Asymptotic analysis of the 1D model, Asymptotic Anal., Volume 27 (2001) no. 2, pp. 127-160
[6] Modelling, Analysis and Control of Thin Plates, Masson, Paris, 1988
[7] Uniform stabilisability of a full von Kármán system with nonlinear boundary feedback, SIAM J. Control, Volume 36 (1998)
[8] K. Lemrabet, Etude de divers problèmes aux limites de ventcel d'origine physique ou mécanique dans des domaines non réguliers, Thèse de Doctorat d'Etat, U.S.T.H.B, 1987
[9] Ventcel's boundary conditions for a dynamic nonlinear plate, Asymptotic Anal., Volume 38 (2004), pp. 319-337
Cited by Sources:
Comments - Policy