[La théorie des corps ordonnés différentiellement clos munis de m dérivations commutant entre elles]
Nous généralisons les travaux de M. Singer concernant la théorie des corps ordonnés différentiellement clos au cas des corps ordonnés munis de m dérivations commutant entre elles. Nous donnons une axiomatisation algébrique de la modèle-complétion de cette théorie et nous pouvons directement déduire que cette dernière admet l'élimination des quantificateurs dans le langage naturel des anneaux ordonnés différentiels.
We generalize the work of M. Singer (1978) on the theory of closed ordered differential fields to the case of m-ODF, the theory of ordered fields equipped with m commuting derivations. We give an algebraic axiomatization of the model completion (denoted by m-CODF) of this theory and we can immediately deduce that m-CODF has quantifier elimination in the natural language of ordered Δ-rings.
Accepté le :
Publié le :
Cédric Rivière 1
@article{CRMATH_2006__343_3_151_0, author = {C\'edric Rivi\`ere}, title = {The theory of closed ordered differential fields with \protect\emph{m} commuting derivations}, journal = {Comptes Rendus. Math\'ematique}, pages = {151--154}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.019}, language = {en}, }
Cédric Rivière. The theory of closed ordered differential fields with m commuting derivations. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 151-154. doi : 10.1016/j.crma.2006.06.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.019/
[1] Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, vol. 54, Academic Press, 1973
[2] Saturated Model Theory, Benjamin, 1972
[3] The uniform companion for large differential fields of characteristic zero, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 3933-3951
[4] Bounds in the theory of polynomials rings over fields. A nonstandard approach, Invent. Math., Volume 76 (1984), pp. 77-91
Cité par Sources :
Commentaires - Politique