We generalize the work of M. Singer (1978) on the theory of closed ordered differential fields to the case of m-ODF, the theory of ordered fields equipped with m commuting derivations. We give an algebraic axiomatization of the model completion (denoted by m-CODF) of this theory and we can immediately deduce that m-CODF has quantifier elimination in the natural language of ordered Δ-rings.
Nous généralisons les travaux de M. Singer concernant la théorie des corps ordonnés différentiellement clos au cas des corps ordonnés munis de m dérivations commutant entre elles. Nous donnons une axiomatisation algébrique de la modèle-complétion de cette théorie et nous pouvons directement déduire que cette dernière admet l'élimination des quantificateurs dans le langage naturel des anneaux ordonnés différentiels.
Accepted:
Published online:
Cédric Rivière 1
@article{CRMATH_2006__343_3_151_0, author = {C\'edric Rivi\`ere}, title = {The theory of closed ordered differential fields with \protect\emph{m} commuting derivations}, journal = {Comptes Rendus. Math\'ematique}, pages = {151--154}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.06.019}, language = {en}, }
Cédric Rivière. The theory of closed ordered differential fields with m commuting derivations. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 151-154. doi : 10.1016/j.crma.2006.06.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.019/
[1] Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, vol. 54, Academic Press, 1973
[2] Saturated Model Theory, Benjamin, 1972
[3] The uniform companion for large differential fields of characteristic zero, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 3933-3951
[4] Bounds in the theory of polynomials rings over fields. A nonstandard approach, Invent. Math., Volume 76 (1984), pp. 77-91
Cited by Sources:
Comments - Policy