Comptes Rendus
Logic
The theory of closed ordered differential fields with m commuting derivations
[La théorie des corps ordonnés différentiellement clos munis de m dérivations commutant entre elles]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 151-154.

We generalize the work of M. Singer (1978) on the theory of closed ordered differential fields to the case of m-ODF, the theory of ordered fields equipped with m commuting derivations. We give an algebraic axiomatization of the model completion (denoted by m-CODF) of this theory and we can immediately deduce that m-CODF has quantifier elimination in the natural language of ordered Δ-rings.

Nous généralisons les travaux de M. Singer concernant la théorie des corps ordonnés différentiellement clos au cas des corps ordonnés munis de m dérivations commutant entre elles. Nous donnons une axiomatisation algébrique de la modèle-complétion de cette théorie et nous pouvons directement déduire que cette dernière admet l'élimination des quantificateurs dans le langage naturel des anneaux ordonnés différentiels.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.06.019

Cédric Rivière 1

1 Université Denis-Diderot Paris 7, équipe de logique mathématique, 2, place Jussieu, 75251 Paris cedex 05, France
@article{CRMATH_2006__343_3_151_0,
     author = {C\'edric Rivi\`ere},
     title = {The theory of closed ordered differential fields with \protect\emph{m} commuting derivations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {151--154},
     publisher = {Elsevier},
     volume = {343},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2006.06.019},
     language = {en},
}
TY  - JOUR
AU  - Cédric Rivière
TI  - The theory of closed ordered differential fields with m commuting derivations
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 151
EP  - 154
VL  - 343
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2006.06.019
LA  - en
ID  - CRMATH_2006__343_3_151_0
ER  - 
%0 Journal Article
%A Cédric Rivière
%T The theory of closed ordered differential fields with m commuting derivations
%J Comptes Rendus. Mathématique
%D 2006
%P 151-154
%V 343
%N 3
%I Elsevier
%R 10.1016/j.crma.2006.06.019
%G en
%F CRMATH_2006__343_3_151_0
Cédric Rivière. The theory of closed ordered differential fields with m commuting derivations. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 151-154. doi : 10.1016/j.crma.2006.06.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.019/

[1] E.R. Kolchin Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, vol. 54, Academic Press, 1973

[2] G. Sacks Saturated Model Theory, Benjamin, 1972

[3] M. Tressl The uniform companion for large differential fields of characteristic zero, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 3933-3951

[4] L. van den Dries; K. Schmidt Bounds in the theory of polynomials rings over fields. A nonstandard approach, Invent. Math., Volume 76 (1984), pp. 77-91

  • Matthias Aschenbrenner; Artem Chernikov; Allen Gehret; Martin Ziegler Distality in valued fields and related structures, Transactions of the American Mathematical Society, Volume 375 (2022) no. 7, p. 4641 | DOI:10.1090/tran/8661
  • Antongiulio Fornasiero; Elliot Kaplan Generic derivations on o-minimal structures, Journal of Mathematical Logic, Volume 21 (2021) no. 02, p. 2150007 | DOI:10.1142/s0219061321500070
  • Quentin Brouette A nullstellensatz and a positivstellensatz for ordered differential fields, Mathematical Logic Quarterly, Volume 59 (2013) no. 3, p. 247 | DOI:10.1002/malq.201200041

Cité par 3 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: