Comptes Rendus
Number Theory
Sieving and expanders
Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 155-159.

Let V be an orbit in Zn of a finitely generated subgroup Λ of GLn(Z) whose Zariski closure Zcl(Λ) is suitably large (e.g. isomorphic to SL2). We develop a Brun combinatorial sieve for estimating the number of points on V for which a fixed set of integral polynomials take prime or almost prime values. A crucial role is played by the expansion property of the ‘congruence graphs’ that we associate with V. This expansion property is established when Zcl(Λ)=SL2.

Soit V l'orbite dans Zn d'un sous-groupe finiment engendré de GLn(Z) don't l'adhérence dans la topologie de Zariski est suffisament grande (p.e. est isomorphe à SL2). Nous developpons une crible combinatoire de Brun a fin d'estimer le nombre de points de V pour lesquels un system de polynômes donnés prennent des valeurs premières ou presque premières. Des propriétés d'expansion de certain « graphes de congruence » y jouent un rôle crucial, qu'on établi dans le cas Zcl(Λ)=SL2.

Published online:
DOI: 10.1016/j.crma.2006.05.023
Jean Bourgain 1; Alex Gamburd 1, 2; Peter Sarnak 1, 3

1 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
2 Department of Mathematics, University of California, Santa Cruz, USA
3 Department of Mathematics, Princeton University, USA
     author = {Jean Bourgain and Alex Gamburd and Peter Sarnak},
     title = {Sieving and expanders},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {155--159},
     publisher = {Elsevier},
     volume = {343},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crma.2006.05.023},
     language = {en},
AU  - Jean Bourgain
AU  - Alex Gamburd
AU  - Peter Sarnak
TI  - Sieving and expanders
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 155
EP  - 159
VL  - 343
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2006.05.023
LA  - en
ID  - CRMATH_2006__343_3_155_0
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Alex Gamburd
%A Peter Sarnak
%T Sieving and expanders
%J Comptes Rendus. Mathématique
%D 2006
%P 155-159
%V 343
%N 3
%I Elsevier
%R 10.1016/j.crma.2006.05.023
%G en
%F CRMATH_2006__343_3_155_0
Jean Bourgain; Alex Gamburd; Peter Sarnak. Sieving and expanders. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 155-159. doi : 10.1016/j.crma.2006.05.023.

[1] J. Bourgain, Exponential sum estimates over subgroups of Zq*, q arbitrary, J. Analyse, in press

[2] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of SL2(Fp), preprint, 2005

[3] J. Bourgain, A. Gamburd, P. Sarnak, Spectral sieving of thin sets, in preparation

[4] J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, Proc. London Math. Soc., in press

[5] J. Bourgain; N. Katz; T. Tao A sum–product estimate in finite fields and applications, GAFA, Volume 14 (2004), pp. 27-57

[6] A. Gamburd Spectral gap for infinite index “congruence” subgroups of SL2(Z), Israel J. Math., Volume 127 (2002), pp. 157-200

[7] B. Green, T. Tao, Linear equations in primes, preprint

[8] H. Halberstam; H. Richert Sieve Methods, Academic Press, 1974

[9] G.H. Hardy; J.E. Littlewood Some problems of ‘Partitio Numerorum’: III. On the expression of a number as a sum of primes, Acta Math., Volume 44 (1922), pp. 1-70

[10] H. Helfgott, Growth and generation in SL2(Z/pZ), preprint, 2005

[11] H. Iwaniec; E. Kowalski Analytic Number Theory, Amer. Math. Soc., 2004

[12] P.D. Lax; R.S. Phillips The asymptotic distribution of lattice points in Euclidean and non-Euclidean space, J. Funct. Anal., Volume 46 (1982), pp. 280-350

[13] A. Lubotzky Cayley graphs: eigenvalues, expanders and random walks (P. Rowbinson, ed.), Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., vol. 218, Cambridge Univ. Press, 1995, pp. 155-189

[14] C. Matthews; L. Vaserstein; B. Weisfeiler Congruence properties of Zariski-dense subgroups, Proc. London Math. Soc., Volume 48 (1984), pp. 514-532

[15] A. Nevo, P. Sarnak, in preparation

[16] S.J. Patterson The limit set of a Fuchsian group, Acta Math., Volume 136 (1975), pp. 241-273

[17] P. Sarnak What is an expander?, Notices Amer. Math. Soc., Volume 51 (2004), pp. 762-763

[18] P. Sarnak Notes on the generalized Ramanujan conjectures, Clay Math. Proc., Volume 4 (2005), pp. 659-685

[19] P. Sarnak; X. Xue Bounds for multiplicities of automorphic representations, Duke Math. J., Volume 64 (1991), pp. 207-227

[20] A. Schinzel; W. Sierpinksi Sur certaines hypotheses concernant les nombres premiers, Acta Arith., Volume 4 (1958), pp. 185-208

[21] A. Selberg On an elementary method in the theory of primes, Norske Vid. Selsk. Forh., Volume 19 (1947), pp. 64-67

[22] A. Selberg On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., vol. VII, Amer. Math. Soc., 1965, pp. 1-15

[23] J. Tits Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270

[24] I.M. Vinogradov Representations of an odd number as a sum of three primes, Dokl. Akad. Nauk SSSR, Volume 15 (1937), pp. 291-294

Cited by Sources:

Comments - Policy

Articles of potential interest

Random walks and expansion in SLd(Z/pnZ)

Jean Bourgain; Alex Gamburd

C. R. Math (2008)

New results on expanders

Jean Bourgain; Alex Gamburd

C. R. Math (2006)

Sum–product theorems and exponential sum bounds in residue classes for general modulus

Jean Bourgain

C. R. Math (2007)