Let V be an orbit in of a finitely generated subgroup Λ of whose Zariski closure is suitably large (e.g. isomorphic to ). We develop a Brun combinatorial sieve for estimating the number of points on V for which a fixed set of integral polynomials take prime or almost prime values. A crucial role is played by the expansion property of the ‘congruence graphs’ that we associate with V. This expansion property is established when .
Soit V l'orbite dans d'un sous-groupe finiment engendré de don't l'adhérence dans la topologie de Zariski est suffisament grande (p.e. est isomorphe à ). Nous developpons une crible combinatoire de Brun a fin d'estimer le nombre de points de V pour lesquels un system de polynômes donnés prennent des valeurs premières ou presque premières. Des propriétés d'expansion de certain « graphes de congruence » y jouent un rôle crucial, qu'on établi dans le cas .
Published online:
Jean Bourgain 1; Alex Gamburd 1, 2; Peter Sarnak 1, 3
@article{CRMATH_2006__343_3_155_0, author = {Jean Bourgain and Alex Gamburd and Peter Sarnak}, title = {Sieving and expanders}, journal = {Comptes Rendus. Math\'ematique}, pages = {155--159}, publisher = {Elsevier}, volume = {343}, number = {3}, year = {2006}, doi = {10.1016/j.crma.2006.05.023}, language = {en}, }
Jean Bourgain; Alex Gamburd; Peter Sarnak. Sieving and expanders. Comptes Rendus. Mathématique, Volume 343 (2006) no. 3, pp. 155-159. doi : 10.1016/j.crma.2006.05.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.05.023/
[1] J. Bourgain, Exponential sum estimates over subgroups of , q arbitrary, J. Analyse, in press
[2] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of , preprint, 2005
[3] J. Bourgain, A. Gamburd, P. Sarnak, Spectral sieving of thin sets, in preparation
[4] J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, Proc. London Math. Soc., in press
[5] A sum–product estimate in finite fields and applications, GAFA, Volume 14 (2004), pp. 27-57
[6] Spectral gap for infinite index “congruence” subgroups of , Israel J. Math., Volume 127 (2002), pp. 157-200
[7] B. Green, T. Tao, Linear equations in primes, preprint
[8] Sieve Methods, Academic Press, 1974
[9] Some problems of ‘Partitio Numerorum’: III. On the expression of a number as a sum of primes, Acta Math., Volume 44 (1922), pp. 1-70
[10] H. Helfgott, Growth and generation in , preprint, 2005
[11] Analytic Number Theory, Amer. Math. Soc., 2004
[12] The asymptotic distribution of lattice points in Euclidean and non-Euclidean space, J. Funct. Anal., Volume 46 (1982), pp. 280-350
[13] Cayley graphs: eigenvalues, expanders and random walks (P. Rowbinson, ed.), Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., vol. 218, Cambridge Univ. Press, 1995, pp. 155-189
[14] Congruence properties of Zariski-dense subgroups, Proc. London Math. Soc., Volume 48 (1984), pp. 514-532
[15] A. Nevo, P. Sarnak, in preparation
[16] The limit set of a Fuchsian group, Acta Math., Volume 136 (1975), pp. 241-273
[17] What is an expander?, Notices Amer. Math. Soc., Volume 51 (2004), pp. 762-763
[18] Notes on the generalized Ramanujan conjectures, Clay Math. Proc., Volume 4 (2005), pp. 659-685
[19] Bounds for multiplicities of automorphic representations, Duke Math. J., Volume 64 (1991), pp. 207-227
[20] Sur certaines hypotheses concernant les nombres premiers, Acta Arith., Volume 4 (1958), pp. 185-208
[21] On an elementary method in the theory of primes, Norske Vid. Selsk. Forh., Volume 19 (1947), pp. 64-67
[22] On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., vol. VII, Amer. Math. Soc., 1965, pp. 1-15
[23] Free subgroups in linear groups, J. Algebra, Volume 20 (1972), pp. 250-270
[24] Representations of an odd number as a sum of three primes, Dokl. Akad. Nauk SSSR, Volume 15 (1937), pp. 291-294
Cited by Sources:
Comments - Policy