We consider the Laplace–Dirichlet equation in a polygonal domain which is perturbed at the scale ε near one of its vertices. We assume that this perturbation is self-similar, that is, derives from the same pattern for all values of ε. On the base of this model problem, we compare two different approaches: the method of matched asymptotic expansions and the method of multiscale expansion. We enlighten the specificities of both techniques, and show how to switch from one expansion to the other.
On considère le problème de Laplace–Dirichlet dans un domaine polygonal qui présente une perturbation de taille ε en l'un de ses sommets. Cette perturbation est supposée auto-similaire, i.e. provient d'un motif fixe dilaté à l'échelle ε. Sur ce problème modèle, nous mettons en œuvre deux méthodes : développements asymptotiques raccordés et développement multi-échelle. Nous mettons en évidence les particularités de chaque approche et montrons comment passer d'un développement à l'autre.
Accepted:
Published online:
Sébastien Tordeux 1; Grégory Vial 2; Monique Dauge 3
@article{CRMATH_2006__343_10_637_0, author = {S\'ebastien Tordeux and Gr\'egory Vial and Monique Dauge}, title = {Matching and multiscale expansions for a model singular perturbation problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {637--642}, publisher = {Elsevier}, volume = {343}, number = {10}, year = {2006}, doi = {10.1016/j.crma.2006.10.010}, language = {en}, }
TY - JOUR AU - Sébastien Tordeux AU - Grégory Vial AU - Monique Dauge TI - Matching and multiscale expansions for a model singular perturbation problem JO - Comptes Rendus. Mathématique PY - 2006 SP - 637 EP - 642 VL - 343 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2006.10.010 LA - en ID - CRMATH_2006__343_10_637_0 ER -
Sébastien Tordeux; Grégory Vial; Monique Dauge. Matching and multiscale expansions for a model singular perturbation problem. Comptes Rendus. Mathématique, Volume 343 (2006) no. 10, pp. 637-642. doi : 10.1016/j.crma.2006.10.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.10.010/
[1] G. Caloz, M. Costabel, M. Dauge, G. Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer, Asymptotic Analysis (2006), in press
[2] Elliptic Boundary Value Problems in Corner Domains – Smoothness and Asymptotics of Solutions, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988
[3] Boundary Value Problems in Non-Smooth Domains, Pitman, London, 1985
[4] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs, 1992
[5] Matching of asymptotic expansions for wave propagation in media with thin slots I: The asymptotic expansion, Multiscale Modeling and Simulation, Volume 5 (2006) no. 1, pp. 304-336
[6] Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., Volume 16 (1967), pp. 227-313
[7] Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Birkhäuser, Berlin, 2000
[8] S. Tordeux, G. Vial, M. Dauge, Selfsimilar perturbation near a corner: matching and multiscale expansions, 2006, in preparation
Cited by Sources:
Comments - Policy