[La trace au bord précise des solutions d'une classe d'équations non linéaires sur-critiques]
Nous construisons et étudions les propriétés de la trace au bord précise des solutions positives de
We construct and study the properties of the precise boundary trace of positive solutions of
Publié le :
Moshe Marcus 1 ; Laurent Véron 2
@article{CRMATH_2007__344_3_181_0, author = {Moshe Marcus and Laurent V\'eron}, title = {The precise boundary trace of solutions of a class of supercritical nonlinear equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {181--186}, publisher = {Elsevier}, volume = {344}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2006.11.028}, language = {en}, }
TY - JOUR AU - Moshe Marcus AU - Laurent Véron TI - The precise boundary trace of solutions of a class of supercritical nonlinear equations JO - Comptes Rendus. Mathématique PY - 2007 SP - 181 EP - 186 VL - 344 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2006.11.028 LA - en ID - CRMATH_2007__344_3_181_0 ER -
Moshe Marcus; Laurent Véron. The precise boundary trace of solutions of a class of supercritical nonlinear equations. Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 181-186. doi : 10.1016/j.crma.2006.11.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.028/
[1] Function Spaces and Potential Theory, Grundlehren Math. Wiss., vol. 314, Springer, 1996
[2] Diffusions, Superdiffusions and Partial Differential Equations, Colloquium Publications, vol. 50, Amer. Math. Soc., Providence, RI, 2002
[3] Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, Colloquium Publications, vol. 34, Amer. Math. Soc., Providence, RI, 2004
[4] Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 125-176
[5] Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math., Volume 51 (1998), pp. 897-936
[6] σ-moderate solutions of
[7] The Brownian snake and solutions of
[8] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser, Basel, 1999
[9] The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal., Volume 144 (1998), pp. 201-231
[10] The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl., Volume 77 (1998), pp. 481-524
[11] Removable singularities and boundary trace, J. Math. Pures Appl., Volume 80 (2000), pp. 879-900
[12] Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Eur. Math. Soc., Volume 6 (2004), pp. 483-527
[13] Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Mem. Amer. Math. Soc., Volume 168 (2004)
Cité par Sources :
Commentaires - Politique