We construct and study the properties of the precise boundary trace of positive solutions of in a smooth bounded domain of , in the supercritical case .
Nous construisons et étudions les propriétés de la trace au bord précise des solutions positives de dans un domaine régulier de , dans le cas sur-critique .
Published online:
Moshe Marcus 1; Laurent Véron 2
@article{CRMATH_2007__344_3_181_0,
author = {Moshe Marcus and Laurent V\'eron},
title = {The precise boundary trace of solutions of a class of supercritical nonlinear equations},
journal = {Comptes Rendus. Math\'ematique},
pages = {181--186},
year = {2007},
publisher = {Elsevier},
volume = {344},
number = {3},
doi = {10.1016/j.crma.2006.11.028},
language = {en},
}
TY - JOUR AU - Moshe Marcus AU - Laurent Véron TI - The precise boundary trace of solutions of a class of supercritical nonlinear equations JO - Comptes Rendus. Mathématique PY - 2007 SP - 181 EP - 186 VL - 344 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2006.11.028 LA - en ID - CRMATH_2007__344_3_181_0 ER -
Moshe Marcus; Laurent Véron. The precise boundary trace of solutions of a class of supercritical nonlinear equations. Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 181-186. doi: 10.1016/j.crma.2006.11.028
[1] Function Spaces and Potential Theory, Grundlehren Math. Wiss., vol. 314, Springer, 1996
[2] Diffusions, Superdiffusions and Partial Differential Equations, Colloquium Publications, vol. 50, Amer. Math. Soc., Providence, RI, 2002
[3] Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, Colloquium Publications, vol. 34, Amer. Math. Soc., Providence, RI, 2004
[4] Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 125-176
[5] Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math., Volume 51 (1998), pp. 897-936
[6] σ-moderate solutions of and fine trace on the boundary, C. R. Acad. Sci. Paris, Ser. I, Volume 326 (1998), pp. 1189-1194
[7] The Brownian snake and solutions of in a domain, Probab. Theory Related Fields, Volume 102 (1995), pp. 393-432
[8] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser, Basel, 1999
[9] The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal., Volume 144 (1998), pp. 201-231
[10] The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl., Volume 77 (1998), pp. 481-524
[11] Removable singularities and boundary trace, J. Math. Pures Appl., Volume 80 (2000), pp. 879-900
[12] Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Eur. Math. Soc., Volume 6 (2004), pp. 483-527
[13] Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Mem. Amer. Math. Soc., Volume 168 (2004)
Cited by Sources:
Comments - Policy
