[Identités de Dupire pour quelques modèles d'option]
Dupire's identity is very useful to compute all financial options based on a single asset at once and also for the calibration of models. We show that it is not limited to European options based on a single Brownian driven asset. By using the adjoint equations of the financial models we extend the concept to barrier options, Lévy driven options, basket options and partially to stochastic volatility models. The technique does not work for American and Asian options. The analytic derivations of these Dupire-like formulae is tested numerically and excellent agreement is found proving henceforth that the method is also numerically feasible.
L'identité de Dupire est très utile pour calculer tous les prix d'options sur un seul sous-jacent par une unique résolution des équations aux dérivées partielles et aussi pour la calibration des modèles en mathématiques financières. Nous montrons ici comment obtenir de telles identités dans quelques cas plus complexes que le cadre traité par Dupire lui-même : options barrières, options paniers et options modélisées par des modèles à volatilité stochastique ou par des processus de Lévy. Les formules sont aussi testées sur des exemples numériques et une très bonne précision est obtenue.
Accepté le :
Publié le :
Olivier Pironneau 1, 2
@article{CRMATH_2007__344_2_127_0, author = {Olivier Pironneau}, title = {Dupire-like identities for complex options}, journal = {Comptes Rendus. Math\'ematique}, pages = {127--133}, publisher = {Elsevier}, volume = {344}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2006.11.032}, language = {en}, }
Olivier Pironneau. Dupire-like identities for complex options. Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 127-133. doi : 10.1016/j.crma.2006.11.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.032/
[1] Y. Achdou, An inverse problem for a parabolic variational inequality with an integro-differential operator arising in the calibration of Lévy processes with American options, 2006, in press
[2] Numerical Methods for Option Pricing, SIAM, Philadelphia, USA, 2005
[3] Financial Modelling with Jump Processes, Chapman and Hall, 2003
[4] Calibration of the local volatility in a generalized Black–Scholes model using Tikhonov regularization, SIAM J. Math. Anal., Volume 34 (2003) no. 5, pp. 1183-1206
[5] Pricing with a smile, Risk (1994), pp. 18-20
[6] http://www.freefem.org (freefem++ documentation)
[7] Stock price distributions with stochastic volatility: an analytic approach, The Review of Financial Studies, Volume 4 (1991) no. 4, pp. 727-752
[8] The Mathematics of Financial Derivatives, Cambridge University Press, Cambridge, 1995 (A student introduction)
- The Kolmogorov forward fractional partial differential equation for the CGMY-process with applications in option pricing, Computers Mathematics with Applications, Volume 76 (2018) no. 10, pp. 2330-2344 | DOI:10.1016/j.camwa.2018.08.028 | Zbl:1442.91103
- Forward deterministic pricing of options using Gaussian radial basis functions, Journal of Computational Science, Volume 24 (2018), p. 209 | DOI:10.1016/j.jocs.2017.05.016
- Optimal Management and Price Selection, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 107 | DOI:10.1007/978-3-319-38990-5_3
- Delta Hedging in Complete Market, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 127 | DOI:10.1007/978-3-319-38990-5_4
- Super-Replication and Its Practical Limits, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 167 | DOI:10.1007/978-3-319-38990-5_5
- Hedging Under Loss Constraints, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 193 | DOI:10.1007/978-3-319-38990-5_6
- Local Volatility Models, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 227 | DOI:10.1007/978-3-319-38990-5_7
- Stochastic Volatility Models, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 255 | DOI:10.1007/978-3-319-38990-5_8
- Discrete Time Models, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 3 | DOI:10.1007/978-3-319-38990-5_1
- Continuous Time Models, Fundamentals and Advanced Techniques in Derivatives Hedging (2016), p. 55 | DOI:10.1007/978-3-319-38990-5_2
- A forward equation for barrier options under the Brunick Shreve Markovian projection, Quantitative Finance, Volume 16 (2016) no. 6, pp. 827-838 | DOI:10.1080/14697688.2015.1099718 | Zbl:1465.91128
- Adaptive trust-region POD methods in PIDE-constrained optimization, Trends in PDE constrained optimization, Cham: Birkhäuser/Springer, 2014, pp. 327-342 | DOI:10.1007/978-3-319-05083-6_20 | Zbl:1327.49053
- Exact volatility calibration based on a Dupire-type call-put duality for perpetual American options, NoDEA. Nonlinear Differential Equations and Applications, Volume 16 (2009) no. 4, pp. 523-554 | DOI:10.1007/s00030-009-0027-8 | Zbl:1179.60021
- Stochastic flow approach to Dupire's formula, Finance and Stochastics, Volume 11 (2007) no. 4, pp. 521-535 | DOI:10.1007/s00780-007-0042-8 | Zbl:1141.35034
Cité par 14 documents. Sources : Crossref, zbMATH
Commentaires - Politique