We provide here an infinite family of finite subgroups for which the G-Hilbert scheme is a crepant resolution of , via the Hilbert–Chow morphism. The proof is based on an explicit description of the toric structure of in terms of Nakamura's -graphs.
Nous décrivons ici une famille infinie de sous-groupes finis , telle que le -schéma de Hilbert sur l'espace affine soit lisse et donne une résolution crépante de , pour tout , via le morphisme de Hilbert–Chow. La preuve est basée sur une description explicite de la structure torique de , , à l'aide de -graphes.
Accepted:
Published online:
Magda Sebestean 1
@article{CRMATH_2007__344_2_115_0, author = {Magda Sebestean}, title = {Smooth toric {\protect\emph{G}-Hilbert} schemes via {\protect\emph{G}-graphs}}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--119}, publisher = {Elsevier}, volume = {344}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2006.11.033}, language = {en}, }
Magda Sebestean. Smooth toric G-Hilbert schemes via G-graphs. Comptes Rendus. Mathématique, Volume 344 (2007) no. 2, pp. 115-119. doi : 10.1016/j.crma.2006.11.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.11.033/
[1] The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., Volume 14 (2001) no. 3, pp. 535-554
[2] How to calculate , Séminaires et Congrès, Volume 6 (2002), pp. 129-154
[3] All toric local complete intersection singularities admit projective crepant resolutions, Tohoku Math. J. (2), Volume 53 (2001) no. 1, pp. 95-107
[4] All Abelian quotient C.I.-singularities admit projective crepant resolutions in all dimensions, Adv. Math., Volume 139 (1998) no. 2, pp. 194-239
[5] McKay correspondence and Hilbert schemes in dimension three, Topology, Volume 39 (2000) no. 6, pp. 1155-1191
[6] McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A, Volume 72A (1996), pp. 135-138
[7] Log crepant birational maps and derived categories, J. Math. Sci. Univ. Tokyo, Volume 12 (2005) no. 2, pp. 211-231
[8] Hilbert schemes of Abelian group orbits, J. Algebraic Geom., Volume 10 (2001) no. 4, pp. 757-779
[9] Young person's guide to canonical singularities, Brunswick, Maine, 1985 (Proc. Sympos. Pure Math.), Volume vol. 46, Amer. Math. Soc., Providence, RI (1987), pp. 345-414
[10] M. Sebestean, Correspondance de McKay et équivalences dérivées, PhD thesis, Paris 7 “Denis Diderot” University
[11] A smooth four-dimensional G-Hilbert scheme, Serdica Math. J., Volume 30 (2004) no. 2–3, pp. 283-292
[12] Certain invariant subrings are Gorenstein, I, II, Osaka J. Math., Volume 11 (1974), pp. 1-8
Cited by Sources:
Comments - Policy