We prove bilateral capacitary estimates for the maximal solution of in the complement of an arbitrary closed set , involving the Bessel capacity , for q in the supercritical range . We derive a pointwise necessary and sufficient condition, via a Wiener type criterion, in order that as for given . Finally we prove a general uniqueness result for large solutions.
Nous démontrons une estimation capacitaire bilatérale de la solution maximale de dans un domaine quelconque de impliquant la capacité de Bessel dans le cas sur-critique . Grâce à un critère de type Wiener, nous en déduisons une condition nécessaire et suffisante pour que cette solution maximale tende vers l'infini en un point du bord du domaine. Finalement nous prouvons un résultat général d'unicité des grandes solutions.
Published online:
Moshe Marcus 1; Laurent Véron 2
@article{CRMATH_2007__344_5_299_0, author = {Moshe Marcus and Laurent V\'eron}, title = {Maximal solutions of the equation $ \mathrm{\Delta }u={u}^{q}$ in arbitrary domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {299--304}, publisher = {Elsevier}, volume = {344}, number = {5}, year = {2007}, doi = {10.1016/j.crma.2007.01.002}, language = {en}, }
TY - JOUR AU - Moshe Marcus AU - Laurent Véron TI - Maximal solutions of the equation $ \mathrm{\Delta }u={u}^{q}$ in arbitrary domains JO - Comptes Rendus. Mathématique PY - 2007 SP - 299 EP - 304 VL - 344 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2007.01.002 LA - en ID - CRMATH_2007__344_5_299_0 ER -
Moshe Marcus; Laurent Véron. Maximal solutions of the equation $ \mathrm{\Delta }u={u}^{q}$ in arbitrary domains. Comptes Rendus. Mathématique, Volume 344 (2007) no. 5, pp. 299-304. doi : 10.1016/j.crma.2007.01.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.01.002/
[1] Function Spaces and Potential Theory, Grundlehren Math. Wiss., vol. 314, Springer, 1996
[2] Singularitées éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), Volume 34 (1984) no. 1, pp. 185-206
[3] Wiener's test for super-Brownian motion and the Brownian snake, Probab. Theory Related Fields, Volume 108 (1997), pp. 103-129
[4] Wiener regularity for large solutions of nonlinear equations, Ark. Mat., Volume 41 (2003), pp. 307-339
[5] The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Ration. Mech. Anal., Volume 144 (1998), pp. 201-231
[6] Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evol. Equ., Volume 3 (2003), pp. 637-652 (Dedicated to Philippe Bénilan)
[7] Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Eur. Math. Soc., Volume 6 (2004), pp. 483-527
[8] Capacitary representation of positive solutions of semilinear parabolic equations, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 655-660
[9] Generalized boundary values problems for nonlinear elliptic equations, Electron J. Differ. Equ. Conf., Volume 06 (2001), pp. 313-342
Cited by Sources:
Comments - Policy