A new relaxation scheme is exhibited to approximate the weak solutions of the model to simulate radiative transfer. This numerical method uses better wavespeed approximations than the current schemes. In addition, it is proved to satisfy all the required stability properties and the asymptotic preserving property.
Les solutions faibles du modèle pour le transfert radiatif sont approchées par un nouveau schéma de relaxation. Cette méthode propose une meilleure approximations des vitesses d'onde que celle habituellement considérées par les schémas actuels. De plus, nous établissons les propriétés de stabilité nécessaires ainsi que la satisfaction de la limite diffusive.
Accepted:
Published online:
Christophe Berthon 1, 2; Pierre Charrier 1; Bruno Dubroca 1, 3
@article{CRMATH_2007__344_7_467_0, author = {Christophe Berthon and Pierre Charrier and Bruno Dubroca}, title = {An asymptotic preserving relaxation scheme for a moment model of radiative transfer}, journal = {Comptes Rendus. Math\'ematique}, pages = {467--472}, publisher = {Elsevier}, volume = {344}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.02.004}, language = {en}, }
TY - JOUR AU - Christophe Berthon AU - Pierre Charrier AU - Bruno Dubroca TI - An asymptotic preserving relaxation scheme for a moment model of radiative transfer JO - Comptes Rendus. Mathématique PY - 2007 SP - 467 EP - 472 VL - 344 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2007.02.004 LA - en ID - CRMATH_2007__344_7_467_0 ER -
%0 Journal Article %A Christophe Berthon %A Pierre Charrier %A Bruno Dubroca %T An asymptotic preserving relaxation scheme for a moment model of radiative transfer %J Comptes Rendus. Mathématique %D 2007 %P 467-472 %V 344 %N 7 %I Elsevier %R 10.1016/j.crma.2007.02.004 %G en %F CRMATH_2007__344_7_467_0
Christophe Berthon; Pierre Charrier; Bruno Dubroca. An asymptotic preserving relaxation scheme for a moment model of radiative transfer. Comptes Rendus. Mathématique, Volume 344 (2007) no. 7, pp. 467-472. doi : 10.1016/j.crma.2007.02.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.02.004/
[1] Numerical approximations of the 10-moment Gaussian closure, Math. Comp., Volume 75 (2006), pp. 1809-1831
[2] C. Berthon, P. Charrier, B. Dubroca, An HLLC scheme to solve the radiative transfer model in two space dimension, J. Sci. Comput., doi: | DOI
[3] Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources, Frontiers in Mathematics Series, Birkhäuser, 2004
[4] Asymptotic preserving and positive schemes for radiation hydrodynamics, J. Comput. Phys., Volume 215 (2006), pp. 717-740
[5] P. Charrier, B. Dubroca, G. Duffa, R. Turpault, Multigroup model for radiating flows during atmospheric hypersonic re-entry, in: Proc. of Inter. Workshop on Radiation of High Temperature Gases in Atmospheric Entry, 2003, pp. 103–110
[6] Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 951-956
[7] Hiérarchie de modèles aux moments pour le transfert radiatif, C. R. Acad. Sci. Paris, Ser. I, Volume 329 (1999), pp. 915-920
[8] Asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 337-342
[9] The relaxation scheme for systems of conservation laws in arbitrary space dimension, Comm. Pure Appl. Math., Volume 45 (1995), pp. 235-276
[10] Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transfer, Volume 31 (1984), pp. 149-160
Cited by Sources:
Comments - Policy